FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
关于参数化量子电路(PQC)的成本景观知之甚少。然而,PQC被用于量子神经网络和变异量子算法中,这可能允许近期量子优势。此类应用需要良好的优化器来培训PQC。最近的作品集中在专门针对PQC量身定制的量子意识优化器上。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析上证明了PQC的两个结果:(1)我们在PQC中发现了指数较大的对称性,在成本景观中产生了最小值的呈指数较大的变性。或者,这可以作为相关超参数空间体积的指数减少。 (2)我们研究了噪声下对称性的弹性,并表明,尽管它在Unital噪声下是保守的,但非阴道通道可以打破这些对称性并提高最小值的变性,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小跳跃(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,在存在与当前硬件相当的水平上,SYMH在存在非阴性噪声的情况下提高了整体优化器性能。总体而言,这项工作从局部门转换中得出了大规模电路对称性,并使用它们来构建一种噪声吸引的优化方法。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
Hamiltonian学习是量子系统识别,校准和量子计算机成功运行的重要程序。通过对量子系统的查询,该过程寻求获得给定Hamiltonian模型的参数和噪声源的描述。汉密尔顿学习的标准技术需要仔细设计查询和$ O(\ epsilon ^ {-2})$查询,以获得由于标准量子限制而实现学习错误$ \ epsilon $。通过实现学习错误$ \ epsilon $ \ opsilon $的有效和准确地估计Hamiltonian参数,我们介绍了一个活跃的学习者,它给出了一个初始的训练示例和交互式查询量子系统以产生新的培训数据的能力。我们正式指定和实验地评估该汉密尔顿主动学习(HAL)算法的性能,用于学习四个不同超导IBM量子器件上的双态交叉谐振Hamiltonian的六个参数。与同一问题的标准技术和指定的学习错误相比,HAL可以在相当的非自适应学习算法上实现高达99.8 \%$ 99.1 \%$ 49.1%。此外,通过访问汉密尔顿参数的子集的先前信息,并提供了在学习期间用线性(或指数)的较长系统交互时间选择查询的能力,Hal可以超过标准量子限制,实现Heisenberg(或超级Heisenberg)有限公司学习期间的收敛速度。
translated by 谷歌翻译
变形量子算法(VQAS)可以是噪声中间级量子(NISQ)计算机上的量子优势的路径。自然问题是NISQ设备的噪声是否对VQA性能的基本限制。我们严格证明对嘈杂的VQAS进行严重限制,因为噪音导致训练景观具有贫瘠高原(即消失梯度)。具体而言,对于考虑的本地Pauli噪声,我们证明梯度在Qubits $ N $的数量中呈指数呈指数增长,如果Ansatz的深度以$ N $线性增长。这些噪声诱导的贫瘠强韧(NIBPS)在概念上不同于无辐射贫瘠强度,其与随机参数初始化相关联。我们的结果是为通用Ansatz制定的,该通用ansatz包括量子交替运算符ANSATZ和酉耦合簇Ansatz等特殊情况。对于前者来说,我们的数值启发式展示了用于现实硬件噪声模型的NIBP现象。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
在纠缠和连贯性等计量学中利用量子效应使人们可以测量具有增强灵敏度的参数。但是,时间依赖性的噪声会破坏这种海森堡限制的扩增。我们提出了一种基于量子信号处理框架,以克服这些现实的噪声诱导的实践量子计量学限制。我们的算法将门参数$ \ varphi $〜(单量Z阶段)分开,该算法易受时间依赖性错误与目标门参数$ \ theta $〜(| 10>和| 01> state之间的交换 - 角)易受时间依赖时间的错误。这在很大程度上没有时间依赖性误差。我们的方法实现了$ 10^{ - 4} $径向的准确性,用于学习超导级实验的$ \ theta $,以优于两个数量级的现有替代方案。我们还通过快速的傅立叶变换和顺序相位差异证明了学习时间依赖性栅极参数的鲁棒性。我们从理论和数字上均显示出最佳计量方差缩放的有趣过渡,这是电路深度$ d $的函数,从预抗态度制度$ d \ ll 1/\ theta $ to to Heisenberg限制$ d \ to \ to \ $ $。值得注意的是,在临时策略中,我们的方法对时间敏感参数$ \ varphi $比例的估计差异比渐近的海森伯格限制快速限制为深度的函数,$ \ text {var}(\ hat {\ varphi})\ aid 1/d^4 $。我们的工作是第一个证明在实验室量子计算机中实用应用的量子信号处理算法。
translated by 谷歌翻译
量子信息技术的快速发展显示了在近期量子设备中模拟量子场理论的有希望的机会。在这项工作中,我们制定了1+1尺寸$ \ lambda \ phi \ phi^4 $量子场理论的(时间依赖性)变异量子模拟理论,包括编码,状态准备和时间演化,并具有多个数值模拟结果。这些算法可以理解为Jordan-Lee-Preskill算法的近期变异类似物,这是使用通用量子设备模拟量子场理论的基本算法。此外,我们强调了基于LSZ降低公式和几种计算效率的谐波振荡器基础编码的优势,例如在实施单一耦合群集ANSATZ的肺泡版本时,以准备初始状态。我们还讨论了如何在量子场理论仿真中规避“光谱拥挤”问题,并根据州和子空间保真度评估我们的算法。
translated by 谷歌翻译
有望在近期量子计算机上建立有价值的应用程序。但是,最近的作品指出,VQA的性能极大地依赖于Ansatzes的表现性,并且受到优化问题(例如贫瘠的高原(即消失的梯度))的严重限制。这项工作提出了国家有效的ANSATZ(SEA),以改善训练性,以进行准确的基态制备。我们表明,海洋可以产生一个任意纯状态,其参数比通用的安萨兹少得多,从而使其适合基态估计等任务有效。然后,我们证明可以通过灵活地调节海洋的纠缠能力来有效地通过海洋有效地减轻贫瘠的高原,并可以最大程度地提高训练性。最后,我们研究了大量的示例,在基础状态估计中,我们在成本梯度和收敛速度的幅度上得到了显着改善。
translated by 谷歌翻译
量子点(QDS)阵列是一个有前途的候选系统,实现可扩展的耦合码头系统,并用作量子计算机的基本构建块。在这种半导体量子系统中,设备现在具有数十个,必须仔细地将系统仔细设置为单电子制度并实现良好的Qubit操作性能。必要点位置的映射和栅极电压的电荷提出了一个具有挑战性的经典控制问题。随着QD Qubits越来越多的QD Qubits,相关参数空间的增加充分以使启发式控制不可行。近年来,有一个相当大的努力自动化与机器学习(ML)技术相结合的基于脚本的算法。在这一讨论中,我们概述了QD器件控制自动化进展的全面概述,特别强调了在二维电子气体中形成的基于硅和GaAs的QD。将基于物理的型号与现代数值优化和ML相结合,证明在屈服高效,可扩展的控制方面已经证明非常有效。通过计算机科学和ML的理论,计算和实验努力的进一步整合,在推进半导体和量子计算平台方面具有巨大的潜力。
translated by 谷歌翻译
对状态$ \ lvert \ psi \ rangle $的对称性是单一操作员,其中$ \ lvert \ psi \ rangle $是特征者。当$ \ lvert \ psi \ rangle $是黑盒甲骨文提供的未知状态时,该州的对称性可用于表征它,并且通常会降级有关$ \ lvert \ psi \ rangle $的许多所需信息。在本文中,我们开发了一种变性杂种量子式学习方案,以系统地探测$ \ lvert \ psi \ rangle $的对称性,而没有对状态的先验假设。此过程可用于同时学习各种对称性。为了避免重新学习已经知道的对称性,我们引入了一种具有经典深神经网的交互式协议。因此,经典的网络针对重复的发现进行了正规化,并允许我们的算法通过发现的所有可能对称性终止经验。我们的方案可以平均通过非本地交换门有效地实施;我们还提供了仅使用本地操作的效率较低的算法,这可能更适合当前的噪声量子设备。我们展示了我们对代表国家的算法。
translated by 谷歌翻译
在量子处理器中,设备设计和外部控制在一起有助于目标量子操作的质量。随着我们不断寻求更好的替代QUBBit平台,我们探索了越来越大的设备和控制设计空间。因此,优化变得越来越具有挑战性。在这项工作中,我们证明反映设计目标的功绩图可以对设备和控制参数进行微不可说明。另外,我们可以以与背部传播算法类似的方式计算设计目标的梯度,然后利用梯度来共同有效地优化设备和控制参数。这将量子最优控制的范围扩展到超导装置设计。我们还通过几个例子展示了基于梯度的联合优化对设备和控制参数的可行性。
translated by 谷歌翻译
生成建模是近期量子设备的一项有前途的任务,可以将量子测量的随机性作为随机来源。所谓的出生机器是纯粹的量子模型,并承诺以量子的方式生成概率分布,而对经典计算机无法访问。本文介绍了出生的机器在蒙特卡洛模拟中的应用,并将其覆盖范围扩展到多元和有条件的分布。模型在(嘈杂)模拟器和IBM量子超导量子硬件上运行。更具体地说,出生的机器用于生成由Muons和探测器材料之间的散射过程和高能量物理颜料实验中的探测器材料产生的事件。 MFC是出现在标准模型理论框架中的玻色子,它们是暗物质的候选者。经验证据表明,诞生的机器可以从蒙特卡洛模拟中重现数据集的边际分布和相关性。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
参数化量子电路的优化对于具有变分量子算法(VQAS)的计算任务的应用是必不可少的。然而,VQA的现有优化算法需要过多的量子测量镜头,以估计可观察到的期望值或迭代电路参数的更新,其成本是实际使用的重要障碍。为了解决这个问题,我们开发了一个有效的框架,\ yexit {随机梯度线贝叶斯优化}(SGLBO),用于电路优化,测量镜头较少。通过估计基于随机梯度下降(SGD)更新参数的适当方向,并且进一步利用贝叶斯优化(BO)来估计SGD的每次迭代中的最佳步长,降低测量镜头的成本。我们制定了一个自适应测量射击策略,可在不依赖于精确的期望值估计和许多迭代的情况下可行地实现优化;此外,我们表明,后缀平均技术可以显着降低统计和硬件噪声在VQA的优化中的效果。我们的数值模拟表明,使用这些技术增强的SGLBO可以大大减少所需的测量射击数量,提高优化的准确性,并与VQAS的代表性任务中的其他最先进的优化器相比,增强了噪音的鲁棒性。这些结果建立了一系列量子电路优化器的框架,整合了两种不同的优化方法,SGD和BO,以显着降低测量镜头的成本。
translated by 谷歌翻译
变异量子算法(VQAS)为通过嘈杂的中间规模量子(NISQ)处理器获得量子优势提供了最有希望的途径。这样的系统利用经典优化来调整参数化量子电路(PQC)的参数。目标是最大程度地减少取决于从PQC获得的测量输出的成本函数。通常通过随机梯度下降(SGD)实现优化。在NISQ计算机上,由于缺陷和破坏性而引起的栅极噪声通过引入偏差会影响随机梯度的估计。量子误差缓解(QEM)技术可以减少估计偏差而无需量子数量增加,但它们又导致梯度估计的方差增加。这项工作研究了量子门噪声对SGD收敛的影响,而VQA的基本实例是变异的eigensolver(VQE)。主要目标是确定QEM可以增强VQE的SGD性能的条件。结果表明,量子门噪声在SGD的收敛误差(根据参考无噪声PQC评估)诱导非零误差 - 基础,这取决于噪声门的数量,噪声的强度以及可观察到的可观察到的特征性被测量和最小化。相反,使用QEM,可以获得任何任意小的误差。此外,对于有或没有QEM的误差级别,QEM可以减少所需的迭代次数,但是只要量子噪声水平足够小,并且在每种SGD迭代中允许足够大的测量值。最大切割问题的数值示例证实了主要理论发现。
translated by 谷歌翻译