大脑区域之间的功能连通性(FC)通常是通过应用于功能磁共振成像(FMRI)数据的统计依赖度量来估计的。所得的功能连接矩阵(FCM)通常用于表示脑图的邻接矩阵。最近,图形神经网络(GNN)已成功应用于FCM,以学习脑图表示。但是,现有GNN方法的一个普遍局限性是,它们要求在模型训练之前知道图形邻接矩阵。因此,隐含地假设数据的基础依赖性结构已知。不幸的是,对于fMRI而言,情况并非如此,因为哪种统计度量的选择最能代表数据的依赖性结构是非平凡的。同样,大多数GNN应用于功能磁共振成像,FC都会随着时间的推移而静态,这与神经科学的证据相反,表明功能性脑网络是随时间变化且动态的。这些复合问题可能会对GNN学习脑图表示的能力产生不利影响。作为解决方案,我们提出了动态大脑图结构学习(DBGSL),这是一种学习fMRI数据最佳时变依赖性结构的监督方法。具体而言,DBGSL通过应用于大脑区域嵌入的时空注意力从fMRI时间表中学习了动态图。然后将所得的图馈送到空间GNN中,以学习分类的图表。大型休息状态以及性别分类任务的fMRI数据集的实验表明,DBGSL可以实现最新的性能。此外,对学习动态图的分析突出了与现有神经科学文献的发现相符的预测相关大脑区域。
translated by 谷歌翻译
深度神经网络端对端训练有素,将(嘈杂)图像映射到干净的图像的测量值非常适合各种线性反问题。当前的方法仅在数百或数千张图像上进行训练,而不是在其他领域进行了数百万个示例。在这项工作中,我们研究是否可以通过扩大训练组规模来获得重大的性能提高。我们考虑图像降解,加速磁共振成像以及超分辨率,并在经验上确定重建质量是训练集大小的函数,同时最佳地扩展了网络大小。对于所有三个任务,我们发现最初陡峭的幂律缩放率已经在适度的训练集大小上大大减慢。插值这些缩放定律表明,即使对数百万图像进行培训也不会显着提高性能。为了了解预期的行为,我们分析表征了以早期梯度下降学到的线性估计器的性能。结果正式的直觉是,一旦通过学习信号模型引起的误差,相对于误差地板,更多的训练示例不会提高性能。
translated by 谷歌翻译
在本文中,我们对数值模拟的加速感兴趣。我们专注于高超音速行星再入问题,该问题涉及耦合流体动力学和化学反应。模拟化学反应需要大部分计算时间,但另一方面,无法避免获得准确的预测。我们面临成本效率和准确性之间的权衡:模拟代码必须足够有效地在操作环境中使用,但必须足够准确,以忠实地预测现象。为了解决这个权衡,我们设计了一个混合模拟代码,将传统的流体动态求解器与近似化学反应的神经网络耦合。当在大数据上下文中应用以及它们源于其矩阵矢量结构的效率时,我们依靠它们的力量来实现重要的加速因子($ \ tims 10 $至$ \ times 18.6 $)。本文旨在解释我们如何在实践中设计这种具有成本效益的混合模拟代码。最重要的是,我们描述了确保准确性保证的方法论,使我们能够超越传统的替代建模,并将这些代码用作参考。
translated by 谷歌翻译
通常,在加固学习(RL)中,奖励会随着时间的流逝而使用指数函数来模拟时间偏好,从而限制了预期的长期奖励。相反,在经济学和心理学中,已经表明人类通常采用双曲线折现方案,当假定特定的任务终止时间分布时,这是最佳的。在这项工作中,我们提出了一种基于连续的基于模型的强化学习的理论,将其推广到任意折扣功能。该公式涵盖了存在非指数随机终止时间的情况。我们得出了表征最佳策略的汉密尔顿 - 雅各比 - 贝尔曼(HJB)方程,并描述了如何使用搭配方法来求解它,该方法使用深度学习进行函数近似。此外,我们展示了如何解决逆RL问题,其中人们试图恢复给定决策数据的折现功能的属性。我们在两个模拟问题上验证了我们提出的方法的适用性。我们的方法为分析在顺序决策任务中分析人类折现的道路开辟了道路。
translated by 谷歌翻译
计算优化问题解决方案解决方案的雅各布是机器学习中的一个核心问题,其应用程序在超参数优化,元学习,优化为层和数据集蒸馏中的应用程序,仅举几例。展开的分化是一种流行的启发式方法,它使用迭代求解器近似溶液,并通过计算路径区分它。这项工作提供了对梯度下降和Chebyshev方法的二次目标的这种方法的非反应收敛速率分析。我们表明,为了确保雅各布的融合,我们可以1)选择较大的学习率,导致快速渐近地收敛,但接受该算法可能具有任意长的燃烧阶段或2)选择较小的学习率直接但较慢的收敛性。我们将这种现象称为展开的诅咒。最后,我们讨论了相对于这种方法的开放问题,例如为最佳展开策略得出实用的更新规则,并与Sobolev正交多项式领域建立了新的联系。
translated by 谷歌翻译
退火重要性采样(AIS)是一种流行的算法,用于估计深层生成模型的棘手边际可能性。尽管AIS可以保证为任何一组超参数提供无偏估计,但共同的实现依赖于简单的启发式方法,例如初始和目标分布之间的几何平均桥接分布,这些分布在计算预算有限时会影响估计性性能。由于使用Markov过渡中的大都市磨碎(MH)校正步骤,因此对完全参数AI的优化仍然具有挑战性。我们提出一个具有灵活中间分布的参数AIS过程,并优化桥接分布以使用较少数量的采样步骤。一种重新聚集方法,它允许我们优化分布序列和Markov转换的参数,该参数适用于具有MH校正的大型Markov内核。我们评估了优化AIS的性能,以进行深层生成模型的边际可能性估计,并将其与其他估计器进行比较。
translated by 谷歌翻译
在存在白噪声的情况下,在各个科学领域,在存在白噪声的情况下逃脱吸引盆地的平均退出时间至关重要。在这项工作中,我们提出了一种策略,以控制一般随机动力学系统的平均退出时间,以基于准潜电概念和机器学习实现所需的价值。具体而言,我们开发了一个神经网络体系结构来计算全局准次电位函数。然后,我们设计了一种系统的迭代数值算法来计算给定平均退出时间的控制器。此外,我们在有效的汉密尔顿 - 雅各比计划和受过训练的神经网络的帮助下确定了亚稳态吸引子之间的最可能路径。数值实验表明,我们的控制策略是有效且足够准确的。
translated by 谷歌翻译
我们提供了奖励黑客的第一个正式定义,即优化不完美的代理奖励功能的现象,$ \ Mathcal {\ tilde {r}} $,根据真实的奖励功能,$ \ MATHCAL {R} $导致性能差。 。我们说,如果增加预期的代理回报率永远无法减少预期的真实回报,则代理是不可接受的。直觉上,可以通过从奖励功能(使其“较窄”)中留出一些术语或忽略大致等效的结果之间的细粒度区分来创建一个不可接受的代理,但是我们表明情况通常不是这样。一个关键的见解是,奖励的线性性(在州行动访问计数中)使得无法实现的状况非常强烈。特别是,对于所有随机策略的集合,只有在其中一个是恒定的,只有两个奖励函数才能是不可接受的。因此,我们将注意力转移到确定性的政策和有限的随机政策集中,在这些策略中,始终存在非平凡的不可动摇的对,并为简化的存在建立必要和充分的条件,这是一个重要的不被限制的特殊情况。我们的结果揭示了使用奖励函数指定狭窄任务和对齐人类价值的AI系统之间的紧张关系。
translated by 谷歌翻译
在许多情况下,更简单的模型比更复杂的模型更可取,并且该模型复杂性的控制是机器学习中许多方法的目标,例如正则化,高参数调整和体系结构设计。在深度学习中,很难理解复杂性控制的潜在机制,因为许多传统措施并不适合深度神经网络。在这里,我们开发了几何复杂性的概念,该概念是使用离散的dirichlet能量计算的模型函数变异性的量度。使用理论论据和经验结果的结合,我们表明,许多常见的训练启发式方法,例如参数规范正规化,光谱规范正则化,平稳性正则化,隐式梯度正则化,噪声正则化和参数初始化的选择,都可以控制几何学复杂性,并提供一个统一的框架,以表征深度学习模型的行为。
translated by 谷歌翻译
在因果推理和强盗文献中,基于观察数据的线性功能估算线性功能的问题是规范的。我们分析了首先估计治疗效果函数的广泛的两阶段程序,然后使用该数量来估计线性功能。我们证明了此类过程的均方误差上的非反应性上限:这些边界表明,为了获得非反应性最佳程序,应在特定加权$ l^2 $中最大程度地估算治疗效果的误差。 -规范。我们根据该加权规范的约束回归分析了两阶段的程序,并通过匹配非轴突局部局部最小值下限,在有限样品中建立了实例依赖性最优性。这些结果表明,除了取决于渐近效率方差之外,最佳的非质子风险除了取决于样本量支持的最富有函数类别的真实结果函数与其近似类别之间的加权规范距离。
translated by 谷歌翻译