深度神经网络拥有的一个重要股权是在以前看不见的数据上对分发检测(OOD)进行强大的能力。在为现实世界应用程序部署模型时,此属性对于安全目的至关重要。最近的研究表明,概率的生成模型可以在这项任务上表现不佳,这令他们寻求估计培训数据的可能性。为了减轻这个问题,我们提出了对变分性自动化器(VAE)的指数倾斜的高斯先前分配。通过此之前,我们能够使用VAE自然分配的负面日志可能性来实现最先进的结果,同时比某些竞争方法快的数量级。我们还表明,我们的模型生产高质量的图像样本,这些样本比标准高斯VAE更清晰。新的先前分配具有非常简单的实现,它使用kullback leibler发散,该kullback leibler发散,该横向leibler发散,该分解比较潜伏向量的长度与球体的半径之间的差异。
translated by 谷歌翻译
功率曲线捕获风速与特定风力涡轮机的输出功率之间的关系。这种功能的准确回归模型在监控,维护,设计和规划方面证明是有用的。然而,在实践中,测量并不总是对应于理想曲线:电源缩减将显示为(附加)功能组件。这种多值关系不能通过常规回归建模,并且在预处理期间通常去除相关数据。目前的工作表明了一种替代方法,可以在缩减电力数据中推断多值关系。使用基于人群的方法,将概率回归模型的重叠混合应用于从操作风电场内的涡轮机记录的信号。示出了模型,以便在整个人口中提供精确的实际功率数据表示。
translated by 谷歌翻译
如今,几次拍摄设置中的分类和分配(OOD)检测仍然具有具有挑战性的目标,因为罕见和几次拍摄设置中的样品有限,并且由于对抗攻击。完成这些目标对于安全,安全和防御的关键系统非常重要。同时,由于深度神经网络分类器为远离训练数据的样品集中置信,因此检测是挑战的具有挑战性。为了解决这些限制,我们提出了几次射击的鲁棒(FROB)模型进行分类和少量拍摄的检测。我们设计了肥胖,以改善鲁棒性和可靠的置信度预测,对几次拍摄的检测。我们生成正常类分布的支持边界,并将其与少量异常曝光(OE)相结合。我们提出了一种基于生成和鉴别模型的自我监督的学习少量置信界限方法。 FROB的贡献是产生的边界以自我监督的学习方式的结合,并在学习边界处施加低信心。 Frob隐含地在边界上产生强烈的对抗性样本,并强制来自ood的样本,包括我们的边界,对分类器的信心不太自信。 FROB通过适用于未知,在野外的测试集中实现概念的概念,与训练数据集无关。为了提高稳健性,甚至可以为零拍摄重新设计OE。通过包括我们的边界,FROB减少了与模型的几次稳健性相关的阈值;它保持了大约独立于几幅射击的表现。不同集合和单级分类(OCC)数据的少量射击鲁棒性分析评估(OCC)数据显示,FROB在鲁棒性方面实现了竞争性能,以鲁棒性对异常较少的样本人口和可变性实现了基准。
translated by 谷歌翻译
我们考虑对二进制数据的独立分量分析。虽然实践中的基本情况,但这种情况比ICA持续不断开发,以便连续数据。我们首先假设连续值潜在空间中的线性混合模型,然后是二进制观察模型。重要的是,我们认为这些来源是非静止的;这是必要的,因为任何非高斯基本上都是由二值化摧毁的。有趣的是,该模型通过采用多元高斯分布的累积分布函数来允许闭合形式的似然。在与持续值为案例的鲜明对比中,我们证明了少数观察变量的模型的非可识别性;当观察变量的数量较高时,我们的经验结果意味着可识别性。我们为二进制ICA展示了仅使用成对边缘的二进制ICA的实用方法,这些方法比完全多变量可能性更快地计算。
translated by 谷歌翻译
本文介绍了伯特嵌入法和图形卷积神经网络的新方法。采用这种组合来解决文本分类问题。最初,我们将BERT嵌入方法应用于文本(在BBC新闻数据集和IMDB电影评论数据集)中,以便将所有文本转换为数字向量。然后,图形卷积神经网络将应用于这些数字向量,以将这些文本分类为其AP的兴趣类/标签。实验表明,图形卷积神经网络模型的性能优于具有CLAS-SICE机器学习模型的BERT嵌入方法的组合的性能。
translated by 谷歌翻译
我们介绍了一个新的真实值不变,称为3范围内的双曲结的自然斜率,这在其CUSP几何形状中定义。我们展示了两倍的结签名,自然斜率在大多数恒定时间上不同的双曲线除以喷射率半径的立方体。使用机器学习发现这种不等式来检测各种结不变之间的关系。它有应用于Dehn手术和4球属的应用。我们还显示了一个精致版本的不等式,其中上限是体积的线性函数,并且斜率通过对应于链接结的短测地测量的术语来校正,该术语将结奇数次数。
translated by 谷歌翻译
为了进一步开发异构治疗效果的统计推理问题,本文在Breiman(2001)随机林树(RFT)和Wager等人的情况下建立了使用古典的优秀统计属性来参数化非参数问题的(2018)因果树。oLs和基于协变量分数的局部线性间隔的划分,同时保留随机林树木,具有可构造的置信区间和渐近常数特性的优势[athey和Imbens(2016),efron(2014),赌第等(2014年)\ citep {wagert2014Asymptotic},我们根据固定规则提出了一个决策树,根据固定规则与本地样本的多项式估计相结合,我们称之为临时局部线性因果树(QLPRT)和林(QLPRF)。
translated by 谷歌翻译
在Boltzmann分发之后采样随机变量是涉及各种应用的NP难题,例如\ Textit {Boltzmann Machines},一种特定的神经网络。已经进行了多次尝试使用D波量子计算机来采样这样的分布,因为这可能导致这些应用中的显着加速。然而,目前,几个挑战仍然有效地进行这种采样。我们详细介绍了各种障碍,解释了解决D波机器上采样问题的剩余困难。
translated by 谷歌翻译
$ \ texttt {gcastle} $是一个端到端Python工具箱,用于因果结构学习。它提供了从模拟器或现实世界数据集的生成数据,从数据学习因果结构的功能,以及评估学到的图表,以及有用的实践,例如先验知识插入,初步邻域选择和后处理以删除错误发现。与相关包相比,$ \ texttt {gcastle} $包括许多最近开发的基于渐变的因果发现方法,具有可选的GPU加速。$ \ texttt {gcastle} $为可以直接尝试代码以及具有图形用户干扰的从业者来为研究人员提供方便。当前版本也提供了电信中的三个现实世界数据集。$ \ texttt {gcastle} $可在Apache许可证2.0下获得\ url {https://github.com/huawei-noah/trustworthyai/tree/master/gcastle}。
translated by 谷歌翻译
蛋白质 - 配体相互作用(PLIS)是生化研究的基础,其鉴定对于估计合理治疗设计的生物物理和生化特性至关重要。目前,这些特性的实验表征是最准确的方法,然而,这是非常耗时和劳动密集型的。在这种情况下已经开发了许多计算方法,但大多数现有PLI预测大量取决于2D蛋白质序列数据。在这里,我们提出了一种新颖的并行图形神经网络(GNN),以集成PLI预测的知识表示和推理,以便通过专家知识引导的深度学习,并通过3D结构数据通知。我们开发了两个不同的GNN架构,GNNF是采用不同特种的基础实现,以增强域名认识,而GNNP是一种新颖的实现,可以预测未经分子间相互作用的先验知识。综合评价证明,GNN可以成功地捕获配体和蛋白质3D结构之间的二元相互作用,对于GNNF的测试精度和0.958,用于预测蛋白质 - 配体络合物的活性。这些模型进一步适用于回归任务以预测实验结合亲和力,PIC50对于药物效力和功效至关重要。我们在实验亲和力上达到0.66和0.65的Pearson相关系数,分别在PIC50和GNNP上进行0.50和0.51,优于基于2D序列的模型。我们的方法可以作为可解释和解释的人工智能(AI)工具,用于预测活动,效力和铅候选的生物物理性质。为此,我们通过筛选大型复合库并将我们的预测与实验测量数据进行比较来展示GNNP对SARS-COV-2蛋白靶标的实用性。
translated by 谷歌翻译