参数化量子电路的优化对于具有变分量子算法(VQAS)的计算任务的应用是必不可少的。然而,VQA的现有优化算法需要过多的量子测量镜头,以估计可观察到的期望值或迭代电路参数的更新,其成本是实际使用的重要障碍。为了解决这个问题,我们开发了一个有效的框架,\ yexit {随机梯度线贝叶斯优化}(SGLBO),用于电路优化,测量镜头较少。通过估计基于随机梯度下降(SGD)更新参数的适当方向,并且进一步利用贝叶斯优化(BO)来估计SGD的每次迭代中的最佳步长,降低测量镜头的成本。我们制定了一个自适应测量射击策略,可在不依赖于精确的期望值估计和许多迭代的情况下可行地实现优化;此外,我们表明,后缀平均技术可以显着降低统计和硬件噪声在VQA的优化中的效果。我们的数值模拟表明,使用这些技术增强的SGLBO可以大大减少所需的测量射击数量,提高优化的准确性,并与VQAS的代表性任务中的其他最先进的优化器相比,增强了噪音的鲁棒性。这些结果建立了一系列量子电路优化器的框架,整合了两种不同的优化方法,SGD和BO,以显着降低测量镜头的成本。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
变异量子算法(VQAS)为通过嘈杂的中间规模量子(NISQ)处理器获得量子优势提供了最有希望的途径。这样的系统利用经典优化来调整参数化量子电路(PQC)的参数。目标是最大程度地减少取决于从PQC获得的测量输出的成本函数。通常通过随机梯度下降(SGD)实现优化。在NISQ计算机上,由于缺陷和破坏性而引起的栅极噪声通过引入偏差会影响随机梯度的估计。量子误差缓解(QEM)技术可以减少估计偏差而无需量子数量增加,但它们又导致梯度估计的方差增加。这项工作研究了量子门噪声对SGD收敛的影响,而VQA的基本实例是变异的eigensolver(VQE)。主要目标是确定QEM可以增强VQE的SGD性能的条件。结果表明,量子门噪声在SGD的收敛误差(根据参考无噪声PQC评估)诱导非零误差 - 基础,这取决于噪声门的数量,噪声的强度以及可观察到的可观察到的特征性被测量和最小化。相反,使用QEM,可以获得任何任意小的误差。此外,对于有或没有QEM的误差级别,QEM可以减少所需的迭代次数,但是只要量子噪声水平足够小,并且在每种SGD迭代中允许足够大的测量值。最大切割问题的数值示例证实了主要理论发现。
translated by 谷歌翻译
Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
Hamiltonian学习是量子系统识别,校准和量子计算机成功运行的重要程序。通过对量子系统的查询,该过程寻求获得给定Hamiltonian模型的参数和噪声源的描述。汉密尔顿学习的标准技术需要仔细设计查询和$ O(\ epsilon ^ {-2})$查询,以获得由于标准量子限制而实现学习错误$ \ epsilon $。通过实现学习错误$ \ epsilon $ \ opsilon $的有效和准确地估计Hamiltonian参数,我们介绍了一个活跃的学习者,它给出了一个初始的训练示例和交互式查询量子系统以产生新的培训数据的能力。我们正式指定和实验地评估该汉密尔顿主动学习(HAL)算法的性能,用于学习四个不同超导IBM量子器件上的双态交叉谐振Hamiltonian的六个参数。与同一问题的标准技术和指定的学习错误相比,HAL可以在相当的非自适应学习算法上实现高达99.8 \%$ 99.1 \%$ 49.1%。此外,通过访问汉密尔顿参数的子集的先前信息,并提供了在学习期间用线性(或指数)的较长系统交互时间选择查询的能力,Hal可以超过标准量子限制,实现Heisenberg(或超级Heisenberg)有限公司学习期间的收敛速度。
translated by 谷歌翻译
变形量子算法(VQAS)可以是噪声中间级量子(NISQ)计算机上的量子优势的路径。自然问题是NISQ设备的噪声是否对VQA性能的基本限制。我们严格证明对嘈杂的VQAS进行严重限制,因为噪音导致训练景观具有贫瘠高原(即消失梯度)。具体而言,对于考虑的本地Pauli噪声,我们证明梯度在Qubits $ N $的数量中呈指数呈指数增长,如果Ansatz的深度以$ N $线性增长。这些噪声诱导的贫瘠强韧(NIBPS)在概念上不同于无辐射贫瘠强度,其与随机参数初始化相关联。我们的结果是为通用Ansatz制定的,该通用ansatz包括量子交替运算符ANSATZ和酉耦合簇Ansatz等特殊情况。对于前者来说,我们的数值启发式展示了用于现实硬件噪声模型的NIBP现象。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
分类是机器学习中的常见任务。随机特征(RFS)作为基于内核方法的可扩展学习算法的中心技术,并且最近提出的优化随机特征取决于模型和数据分布,可以显着减少并证明最小化所需的功能数量。但是,现有的对使用优化RF的分类研究在对每个优化的RF进行采样时都遭受了计算硬度。此外,它未能达到其他最先进的内核方法在低噪声条件下实现的指数快速误差速度。为了克服这些放缓,我们在这里构建了一种通过量子机学习加速的优化RF的分类算法(QML),并研究其运行时以阐明整体优势。我们证明,即使使用优化的RFS,我们的算法也可以在低噪声条件下达到指数误差的收敛。同时,我们的算法可以利用由于QML而没有计算硬度的特征数量的显着减少的优势。这些结果发现了QML在基于领先的内核分类算法加速的有前途的应用,而不会破坏其广泛的适用性和指数误差速度。
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
关于参数化量子电路(PQC)的成本景观知之甚少。然而,PQC被用于量子神经网络和变异量子算法中,这可能允许近期量子优势。此类应用需要良好的优化器来培训PQC。最近的作品集中在专门针对PQC量身定制的量子意识优化器上。但是,对成本景观的无知可能会阻碍这种优化者的进步。在这项工作中,我们在分析上证明了PQC的两个结果:(1)我们在PQC中发现了指数较大的对称性,在成本景观中产生了最小值的呈指数较大的变性。或者,这可以作为相关超参数空间体积的指数减少。 (2)我们研究了噪声下对称性的弹性,并表明,尽管它在Unital噪声下是保守的,但非阴道通道可以打破这些对称性并提高最小值的变性,从而导致多个新的局部最小值。基于这些结果,我们引入了一种称为基于对称的最小跳跃(SYMH)的优化方法,该方法利用了PQC中的基础对称性。我们的数值模拟表明,在存在与当前硬件相当的水平上,SYMH在存在非阴性噪声的情况下提高了整体优化器性能。总体而言,这项工作从局部门转换中得出了大规模电路对称性,并使用它们来构建一种噪声吸引的优化方法。
translated by 谷歌翻译
变分量子本层(VQE)是一种领先的策略,可利用嘈杂的中间量子量子(NISQ)机器来解决化学问题的表现优于经典方法。为了获得大规模问题的计算优势,可行的解决方案是量子分布式优化(QUDIO)方案,该方案将原始问题分配到$ K $子问题中,并将其分配给$ K $量子机器,然后将其分配给并行优化。尽管有可证明的加速度比率,但Qudio的效率可能会因同步操作而大大降低。为了征服这个问题,我们在这里提议在量子分布式优化期间,将洗牌措施涉及到当地的汉密尔顿人。与Qudio相比,Shuffle-Qudio显着降低了量子处理器之间的通信频率,并同时达到了更好的训练性。特别是,我们证明,Shuffle-Qudio可以比Qudio更快地收敛速率。进行了广泛的数值实验,以验证估计分子的基态能量的任务中,隔离式时间速度允许壁式时间速度和低近似误差。我们从经验上证明,我们的建议可以与其他加速技术(例如操作员分组)无缝集成,以进一步提高VQE的疗效。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
量子Gibbs状态的制备是量子计算的重要组成部分,在各种区域具有广泛的应用,包括量子仿真,量子优化和量子机器学习。在本文中,我们提出了用于量子吉布斯状态准备的变分杂化量子典型算法。我们首先利用截短的泰勒系列来评估自由能,并选择截短的自由能量作为损耗功能。然后,我们的协议训练参数化量子电路以学习所需的量子吉布斯状态。值得注意的是,该算法可以在配备有参数化量子电路的近期量子计算机上实现。通过执行数值实验,我们显示浅参数化电路,只有一个额外的量子位训练,以便准备诸如高于95%的保真度的insing链和旋转链Gibbs状态。特别地,对于ising链模型,我们发现,只有一个参数和一个额外的qubit的简化电路ansatz可以训练,以在大于2的逆温度下实现吉布斯状态准备中的99%保真度。
translated by 谷歌翻译
在评估目标时,在线优化嘈杂的功能需要在部署系统上进行实验,这是制造,机器人技术和许多其他功能的关键任务。通常,对安全输入的限制是未知的,我们只会获得嘈杂的信息,表明我们违反约束的距离有多近。但是,必须始终保证安全性,不仅是算法的最终输出。我们介绍了一种通用方法,用于在高维非线性随机优化问题中寻求一个固定点,其中在学习过程中保持安全至关重要。我们称为LB-SGD的方法是基于应用随机梯度下降(SGD),其精心选择的自适应步长大小到原始问题的对数屏障近似。我们通过一阶和零阶反馈提供了非凸,凸面和强键平滑约束问题的完整收敛分析。与现有方法相比,我们的方法通过维度可以更好地更新和比例。我们从经验上将样本复杂性和方法的计算成本比较现有的安全学习方法。除了合成基准测试之外,我们还证明了方法对在安全强化学习(RL)中政策搜索任务中最大程度地减少限制违规的有效性。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
粒子加速器的调谐计算机参数是一项重复且耗时的任务,可自动化。尽管可以使用许多现成的优化算法,但实际上它们的使用量有限,因为大多数方法都不考虑每种迭代中的安全至关重要的约束,例如损失信号或步骤尺寸的限制。一个值得注意的例外是安全的贝叶斯优化,这是一种以嘈杂的反馈进行数据驱动的调谐方法。我们建议并评估Paul Scherrer Institut(PSI)的两个研究设施的安全贝叶斯优化的阶梯尺寸有限变体:a)瑞士游离电子激光器(瑞士法)和b)高强度质子加速器(HIPA)。我们报告了两台机器上有希望的实验结果,最多调整了16个受约束约束的参数。
translated by 谷歌翻译
当前可用的量子计算机受到限制,包括硬件噪声和数量有限的Qubits。因此,利用经典优化器来训练参数化的量子电路的变异量子算法已引起对量子技术的近期实际应用的极大关注。在这项工作中,我们采取概率的观点,并将经典优化重新制定为贝叶斯后部的近似。通过将成本函数与量子电路参数相结合的成本函数结合到最小化的成本函数来诱导后验。我们描述了一个基于最大后验点估计值的降低策略。量子H1-2计算机上的实验表明,所得电路的执行速度更快,嘈杂的速度比没有降低策略的训练的电路较小。随后,我们根据随机梯度Langevin动力学描述了后验采样策略。关于三个不同问题的数值模拟表明,该策略能够从后部完整产生样品并避免局部优势。
translated by 谷歌翻译