水下机器人通常依靠声纳等声传感器来感知周围的环境。但是,这些传感器通常被多种源和噪声类型淹没,这使得使用原始数据对特征,对象或边界返回的任何有意义的推断都非常困难。尽管存在几种传统的处理噪声方法,但它们的成功率并不令人满意。本文介绍了有条件生成的对抗网络(CGAN)的新应用,以训练模型以产生无噪声的声纳图像,从而优于几种常规过滤方法。估计自由空间对于执行主动探索和映射的自主机器人至关重要。因此,与常规方法相比,我们将方法应用于水下占用映射的任务,并显示出卓越的自由和占用空间推断。
translated by 谷歌翻译
关于信息检索的许多最新研究集中在如何从一项任务(通常具有丰富的监督数据)转移到有限的其他各种任务,并隐含地假设可以从一个任务概括到所有其余的任务。但是,这忽略了这样一个事实,即有许多多样化和独特的检索任务,每个任务都针对不同的搜索意图,查询和搜索域。在本文中,我们建议使用几乎没有散热的检索,每个任务都有一个简短的描述和一些示例。为了扩大一些示例的功能,我们提出了针对检索器(即将到来)的及时基本查询生成,该查询将大型语言模型(LLM)作为几个弹片查询生成器,并根据生成的数据创建特定于任务的检索器。通过LLM的概括能力提供动力,即要来源使得可以仅基于一些示例{没有自然问题或MS MARCO来训练%问题生成器或双重编码器,就可以仅基于一些示例{没有}来创建特定于任务的端到端检索。出乎意料的是,LLM提示不超过8个示例,允许双重编码器在MARCO(例如Colbert V2)上训练的大量工程模型平均在11个检索套件中超过1.2 NDCG。使用相同生成数据的进一步培训标准尺寸的重新级别可获得5.0点NDCG的改进。我们的研究确定,查询产生比以前观察到的更有效,尤其是在给出少量特定于任务知识的情况下。
translated by 谷歌翻译
机器人已用于各种自动化,但机器人的设计仍然主要是手动任务。我们试图提供设计工具来自动化机器人自己的设计。机器人设计自动化中的一个重要挑战是,大型且复杂的设计搜索空间随着组件的数量成倍增长,从而使优化难度和样本效率低下。在这项工作中,我们介绍了语法引导潜在空间优化(GLSO),该框架通过训练图形变量自动编码器(VAE)将设计自动化转换为低维连续优化问题,以学习图形结构的设计空间之间的映射和一个连续的潜在空间。这种转换允许在连续的潜在空间中进行优化,在这种情况下,通过应用诸如贝叶斯优化等算法,可以显着提高样品效率。 GLSO使用图形语法规则和机器人世界空间特征指导VAE训练VAE,从而使学习的潜在空间专注于有效的机器人,并且更容易探索优化算法。重要的是,可以重复使用训练有素的VAE来搜索专门针对多个不同任务的设计,而无需再培训。我们通过为模拟中的一组运动任务设计机器人来评估GLSO,并证明我们的方法优于相关的最新机器人设计自动化方法。
translated by 谷歌翻译
寻找统一的复杂性度量和样本效率学习的算法是增强学习研究的核心主题(RL)。 Foster等人最近提出了决策估计系数(DEC)。 (2021)作为样品有效的NO-REGRET RL的必要和足够的复杂度度量。本文通过DEC框架朝着RL的统一理论取得了进步。首先,我们提出了两项​​新的DEC类型复杂性度量:探索性DEC(EDEC)和无奖励DEC(RFDEC)。我们表明,它们对于样本有效的PAC学习和无奖励学习是必要的,因此扩展了原始DEC,该DEC仅捕获了无需重新学习。接下来,我们为所有三个学习目标设计新的统一样品效率算法。我们的算法实例化估计到决策的变体(E2D)元算法具有强大而通用的模型估计值。即使在无重组的设置中,我们的算法E2D-TA也会在Foster等人的算法上提高。 (2021)需要对DEC的变体进行边界,该变体可能是过于大的,或者设计特定问题的估计值。作为应用程序,我们恢复了现有的,并获得了使用单个算法的各种可拖动RL问题的新样品学习结果。最后,作为一种连接,我们根据后采样或最大似然估计重新分析了两种现有的基于乐观模型的算法,表明它们在与DEC相似的结构条件下具有与E2D-TA相似的遗憾界限。
translated by 谷歌翻译
解释视觉场景的含义不仅需要识别其成分对象,还需要对象相互关系的丰富语义表征。在这里,我们通过将现代计算技术应用于复杂自然场景引起的人类脑反应的大规模7T fMRI数据集,研究视觉语义转换的神经机制。使用通过将语言深度学习模型应用于人类生成的场景描述获得的语义嵌入,我们确定了编码语义场景描述的大脑区域的广泛分布网络。重要的是,这些语义嵌入比传统对象类别标签更好地解释了这些区域的活动。此外,尽管参与者没有积极从事语义任务,但它们还是活动的有效预测指标,这表明Visuo-Semantic转换是默认的视觉方式。为了支持这种观点,我们表明,可以直接通过大脑活动模式直接将场景字幕的高度精确重建。最后,经过语义嵌入训练的经常性卷积神经网络进一步超过了语义嵌入在预测大脑活动时的语义嵌入,从而提供了大脑视觉语义转换的机械模型。这些实验和计算结果在一起表明,将视觉输入转换为丰富的语义场景描述可能是视觉系统的核心目标,并且将重点放在这一新目标上可能会导致改进人类大脑中视觉信息处理的模型。
translated by 谷歌翻译
三维荧光显微镜通常遭受各向异性的影响,沿轴向方向的分辨率低于侧面成像平面内的分辨率。我们通过提出双周期来解决此问题,这是双环荧光图像的关节反卷积和融合的新框架。受到最近的神经清性方法的启发,双周期被设计为一种循环一致的生成网络,通过结合双视发电机和先前引导的退化模型,以自我监督的方式训练。我们在合成数据和真实数据上验证双周期,显示其最先进的性能,而无需任何外部培训数据。
translated by 谷歌翻译
现有的广告点击率(CTR)预测模型主要取决于行为ID功能,这些功能是根据历史用户AD交互所学习的。然而,依赖历史用户行为的行为ID功能是不可行的,可以在没有以前与用户互动的情况下描述新广告。为了克服对新广告建模的行为ID特征的局限性,我们利用广告中的视觉内容来提高CTR预测模型的性能。具体来说,我们根据其视觉内容将每个广告映射到一组视觉ID中。这些视觉ID进一步用于生成可视觉嵌入,以增强CTR预测模型。我们将视觉ID的学习分为有监督的量化问题。由于缺乏广告中商业图像的类标签,因此我们利用图像文本描述作为监督,以优化图像提取器以生成有效的视觉ID。同时,由于硬量化是不可差异的,因此我们软化量化操作以使其支持端到端网络培训。将每个图像映射到视觉ID之后,我们根据过去积累的历史用户AD交互学习每个视觉ID的嵌入。由于视觉ID嵌入仅取决于视觉内容,因此它概括为新广告。同时,嵌入视觉ID补充了AD行为ID嵌入。因此,它可以大大提高CTR预测模型的性能,以前依赖于积累了丰富用户行为的新广告和广告的行为ID功能。将视觉ID嵌入在BAIDU在线广告的CTR预测模型中后,AD的平均CTR提高了1.46%,总费用增加了1.10%。
translated by 谷歌翻译
本研究提出了一种新颖的趋势检测和可视化方法 - 更具体地说,随着时间的推移,主题的变化建模。如果当前用于识别和可视化趋势的模型仅传达基于用法随机计数的单一单词的普及,那么本研究中的方法说明了一个主题正在发展的普及和方向。在这种情况下,方向是选定语料库中的独特亚主题。通过使用K-均值聚类和余弦相似性对主题的移动进行建模来对这种趋势进行建模,以将簇之间的距离分组。在收敛的场景中,可以推断出整个主题是在网络上的(主题之间的令牌,可以互换)。相反,一个不同的场景暗示每个主题的各自的令牌在相同的上下文中都不会找到(彼此之间越来越不同)。该方法对20个新闻组数据集中存在的各种媒体房屋的一组文章进行了测试。
translated by 谷歌翻译
深度神经网络(DNNS)在训练过程中容易受到后门攻击的影响。该模型以这种方式损坏正常起作用,但是当输入中的某些模式触发时,会产生预定义的目标标签。现有防御通常依赖于通用后门设置的假设,其中有毒样品共享相同的均匀扳机。但是,最近的高级后门攻击表明,这种假设在动态后门中不再有效,在动态后门中,触发者因输入而异,从而击败了现有的防御。在这项工作中,我们提出了一种新颖的技术BEATRIX(通过革兰氏矩阵检测)。 BEATRIX利用革兰氏矩阵不仅捕获特征相关性,还可以捕获表示形式的适当高阶信息。通过从正常样本的激活模式中学习类条件统计,BEATRIX可以通过捕获激活模式中的异常来识别中毒样品。为了进一步提高识别目标标签的性能,BEATRIX利用基于内核的测试,而无需对表示分布进行任何先前的假设。我们通过与最先进的防御技术进行了广泛的评估和比较来证明我们的方法的有效性。实验结果表明,我们的方法在检测动态后门时达到了91.1%的F1得分,而最新技术只能达到36.9%。
translated by 谷歌翻译
生成模型的最新进展,尤其是在文本引导的扩散模型中,使得能够生产出与专业人类艺术家作品相似的美学图像。但是,必须仔细撰写称为提示的文本描述,并使用一组澄清的关键字进行扩展。由于美学在计算上的评估具有挑战性,因此需要人类反馈来确定最佳的及时及时组合和关键字组合。在本文中,我们提出了一种使用遗传算法来学习及时关键字最有用的组合的人类方法。我们还展示了这种方法如何改善描述相同描述的图像的美学吸引力。
translated by 谷歌翻译
我们提出了一个新型混合动力系统(硬件和软件),该系统载有微型无人接地车辆(MiniUGV),以执行复杂的搜索和操纵任务。该系统利用异质机器人来完成使用单个机器人系统无法完成的任务。它使无人机能够探索一个隐藏的空间,并具有狭窄的开口,Miniugv可以轻松进入并逃脱。假定隐藏的空间可用于MiniUGV。 MiniUGV使用红外(IR)传感器和单眼相机在隐藏空间中搜索对象。所提出的系统利用摄像机的更广阔的视野(FOV)以及对象检测算法的随机性引导隐藏空间中的MiniUGV以找到对象。找到对象后,MiniUGV使用视觉伺服抓住它,然后返回其起点,从无人机将其缩回并将物体运送到安全的地方。如果在隐藏空间中没有发现对象,则无人机继续进行空中搜索。束缚的MiniUGV使无人机具有超出其影响力并执行搜索和操纵任务的能力,而该任务对于任何机器人都无法单独进行。该系统具有广泛的应用,我们通过重复实验证明了其可行性。
translated by 谷歌翻译
大多数从功能磁共振成像(fMRI)数据估算大脑功能连接性的方法依赖于计算统计依赖性的某些度量,或者更一般地,单变量代表性的时间序列(ROIS)(ROI)由多个Voxels组成。但是,总结ROI的多个时间序列具有其平均值或第一个主成分(1pc)可能导致信息丢失,例如,1PC仅解释了神经元活动的多变量信号的一小部分。我们建议在不使用代表性时间序列的情况下直接比较ROI,并根据Wasserstein距离定义了ROI之间的新的多元连通性量度,不一定由相同数量的体素组成。我们在自闭症筛查任务上评估了拟议的Wasserstein功能连接度量,证明了其优越性优于常用单变量和多元功能连通性测量。
translated by 谷歌翻译
本文研究了三个或多个维度的多维面板数据的线性和可分离模型,具有未观察到的交互式固定效果。当在观察到的协变量上估计系数时,两种方法被认为是这些未观察到的交互式固定效应。首先,该模型嵌入了标准二维面板框架中,并且在Bai(2009)中的因子结构方法导致模型参数的一致估计中得出了限制。第二种方法考虑了组固定效应和内核方法,这些方法对问题的多维性质更强大。理论结果和仿真显示了当已知交互式固定效应项的结构时,标准二维方法的好处,但也突出显示了组固定效应和内核方法在不了解这种结构的情况下如何表现良好。实施了这些方法来估计少数型号的需求模型下的啤酒需求弹性。
translated by 谷歌翻译
最近,神经场景表征在视觉上为3D场景提供了令人印象深刻的结果,但是,他们的研究和进步主要仅限于计算机图形或计算机视觉中的虚拟模型的可视化,而无需明确考虑传感器和构成不确定性的情况。但是,在机器人技术应用程序中使用这种新颖的场景表示形式,需要考虑神经图中这种不确定性。因此,本文的目的是提出一种新的方法,用于使用不确定的培训数据训练{\ em概率的神经场景表示},这可以使这些表示形式纳入机器人技术应用中。使用相机或深度传感器获取图像包含固有的不确定性,此外,用于学习3D模型的相机姿势也不完美。如果这些测量值用于训练而无需考虑其不确定性,则结果模型是非最佳的,并且所得场景表示可能包含诸如Blur和Un-Cheven几何形状之类的伪影。在这项工作中,通过以概率方式专注于不确定信息的培训来研究与学习过程的不确定性整合问题。所提出的方法涉及以不确定性项的明确增加训练可能性,以使网络的学习概率分布相对于培训不确定性最小化。可以证明,除了更精确和一致的几何形状外,这还导致更准确的图像渲染质量。对合成数据集和真实数据集进行了验证,表明所提出的方法的表现优于最先进的方法。结果表明,即使训练数据受到限制,该提出的方法也能够呈现新颖的高质量视图。
translated by 谷歌翻译
自动驾驶汽车必须能够可靠地处理不利的天气条件(例如,雪地)安全运行。在本文中,我们研究了以不利条件捕获的转动传感器输入(即图像)的想法,将其下游任务(例如,语义分割)可以达到高精度。先前的工作主要将其作为未配对的图像到图像翻译问题,因为缺乏在完全相同的相机姿势和语义布局下捕获的配对图像。虽然没有完美对准的图像,但可以轻松获得粗配上的图像。例如,许多人每天在好天气和不利的天气中驾驶相同的路线;因此,在近距离GPS位置捕获的图像可以形成一对。尽管来自重复遍历的数据不太可能捕获相同的前景对象,但我们认为它们提供了丰富的上下文信息来监督图像翻译模型。为此,我们提出了一个新颖的训练目标,利用了粗糙的图像对。我们表明,我们与一致的训练方案可提高更好的图像翻译质量和改进的下游任务,例如语义分割,单眼深度估计和视觉定位。
translated by 谷歌翻译
在过去的二十年中,对机器人羊群的研究受到了极大的关注。在本文中,我们提出了一种约束驱动的控制算法,该算法可最大程度地减少单个试剂的能耗并产生新兴的V形成。随着代理之间的分散相互作用的形成出现,我们的方法对自发添加或将代理去除为系统是强大的。首先,我们提出了一个分析模型,用于在固定翼无人机后面的尾巴上洗涤,并得出了尾随无人机以最大化其旅行耐力的最佳空气速度。接下来,我们证明,简单地在最佳空速上飞行将永远不会导致新兴的羊群行为,并且我们提出了一种新的分散的“ Anseroid”行为,从而产生出现的V形成。我们用约束驱动的控制算法编码这些行为,该算法最小化每个无人机的机车能力。最后,我们证明,在我们提出的控制法律下,以近似V或eChelon形成初始化的无人机将融合,我们证明了这种出现在模拟和与Crazyflie四肢旋转机队的实验中实时发生。
translated by 谷歌翻译
最近,与神经网络的时间相关微分方程的解决方案最近引起了很多关注。核心思想是学习控制解决方案从数据演变的法律,该数据可能会被随机噪声污染。但是,与其他机器学习应用相比,通常对手头的系统了解很多。例如,对于许多动态系统,诸如能量或(角度)动量之类的物理量是完全保守的。因此,神经网络必须从数据中学习这些保护定律,并且仅由于有限的训练时间和随机噪声而被满足。在本文中,我们提出了一种替代方法,该方法使用Noether的定理将保护定律本质地纳入神经网络的体系结构。我们证明,这可以更好地预测三个模型系统:在三维牛顿引力潜能中非偏见粒子的运动,Schwarzschild指标中庞大的相对论粒子的运动和两个相互作用的粒子在四个相互作用的粒子系统中的运动方面。
translated by 谷歌翻译
基于骨架的人类动作识别最近引起了人们对外观变化的敏感性和更多骨架数据的可访问性的敏感性。但是,即使在实践中捕获的3D骨骼也对观点和方向仍然敏感,并给出了不同人体关节的阻塞和人类关节定位中的误差。骨骼数据的这种视图差异可能会严重影响动作识别的性能。为了解决这个问题,我们在本文中提出了一种新的视图不变的表示方法,而没有任何手动动作标签,用于基于骨架的人类行动识别。具体而言,我们通过最大化从不同观点提取的表示形式之间的相互信息来利用同一个人同时对同一个人进行的多视图骨架数据,然后提出一个全局 - 局部对比度损失,以模拟多规模CO - 空间和时间域中的发生关系。广泛的实验结果表明,所提出的方法对输入骨骼数据的视图差异是可靠的,并显着提高了基于无监督骨架的人类动作方法的性能,从而在两个具有挑战性的多视图上产生了新的最新精确度Pkummd和NTU RGB+d的基准。
translated by 谷歌翻译
自从最近的监督学习成功以来,应用数学和机器计算引起了很多希望。许多行业的从业人员一直在尝试从旧范式切换到机器学习。有趣的是,这些数据科学家比微调模型花费更多的时间取消,注释和清洁数据。该论文是由以下问题激发的:我们可以比监督学习的一个更通用的框架来从混乱数据中学习吗?假设数据收集的瓶颈在于注释。我们将弱的监督建模为给予而不是独特的目标,即一组目标候选者。我们认为,应该寻找与大多数观测值相匹配的``乐观''功能。这使我们能够得出一个原理来消除部分标签。我们还讨论了将无监督的学习技术纳入我们的框架的优势,特别是通过扩散技术接近的歧管正则化,为此我们得出了一种新算法,该算法通过输入维度比基线方法更好地扩展。最后,我们从被动转换为主动监督的学习,引入了``主动标签''框架,其中从业者可以查询有关所选数据的弱信息。除其他外,我们利用一个事实,即一个事实不需要全部信息来访问随机梯度并执行随机梯度下降。
translated by 谷歌翻译
语法推断是计算学习理论中的一个经典问题,也是自然语言处理中更广泛影响的话题。我们将语法视为计算模型,并提出了一种新型的神经方法,以从正面和负面实例中诱导常规语法。我们的模型是完全可以解释的,其中间结果可直接解释为部分分析,并且可以在提供足够的数据时将其用于学习任意的常规语法。我们的方法始终在各种复杂性测试中获得高召回和精确得分。我们使详细的结果和代码随时可用。
translated by 谷歌翻译
本文介绍了Speakin团队提交的SPEAKER验证(SV)系统,该系统针对2022年远场演讲者验证挑战(FFSVC2022)的任务2和任务2。挑战的SV任务集中在完全监督的远场演讲者验证(任务1)和半监督远场扬声器验证(任务2)的问题上。在任务1中,我们将Voxceleb和FFSVC2020数据集用作火车数据集。对于任务2,我们仅将Voxceleb数据集用作火车集。为此挑战开发了基于重新连接和基于REPVGG的架构。全局统计池结构和MQMHA池结构用于跨时间汇总框架级特征,以获得语音级别的表示。我们采用了Am-Softmax和Aam-Softmax来对产生的嵌入进行分类。我们创新提出了一种分阶段的转移学习方法。在训练阶段,我们保留扬声器的权重,并且在此阶段没有积极的样本来训练它们。然后,我们在第二阶段用正面和负样品微调这些权重。与传统的转移学习策略相比,该策略可以更好地改善模型性能。亚均值和标志的后端方法用于解决域不匹配的问题。在融合阶段,任务1中融合了三个模型,并在任务2中融合了两个模型。在FFSVC2022排行榜上,我们提交的EER为3.0049%,在Task1中,相应的MindCF为0.2938。在任务2中,EER和MindCF分别为6.2060%和0.5232。我们的方法可以提高表现出色,并在两项挑战任务中排名第一。
translated by 谷歌翻译
用于机器阅读理解(MRC)的大多数领域适应方法都使用预先训练的问题解答(QA)构造模型来生成用于MRC传输的伪QA对。这样的过程将不可避免地引入不匹配的对(即嘈杂的对应关系),因此由于i)目标文档中不可用的QA对,ii)在将QA构造模型应用于目标域时的域移位。毫无疑问,嘈杂的信件将退化MRC的性能,但是现有作品忽略了MRC的性能。为了解决这样一个未触及的问题,我们建议通过使用与文档相关的对话以及MRC的新域适应方法来构建质量检查对。具体而言,我们建议用于机器阅读理解理解(RMRC)方法的强大域适应性,该方法由答案提取器(AE),问题选择器(QS)和MRC模型组成。具体而言,RMRC通过通过AE估算与文档的相关性来滤除无关的答案,并通过通过QS将候选问题融合在多轮对话聊天中来提取问题。使用提取的QA对,MRC进行了微调,并提供了反馈,以通过一种新颖的增强自我训练方法优化QS。得益于QS的优化,我们的方法将大大减轻域转移引起的嘈杂对应问题。据我们所知,这可能是揭示噪声对应性在域适应MRC模型中的影响的第一个研究,并显示出一种可行的方法来实现与错配对的鲁棒性。在三个数据集上进行的广泛实验证明了我们方法的有效性。
translated by 谷歌翻译
数据驱动的湍流建模正在经历数据科学算法和硬件开发后的兴趣激增。我们讨论了一种使用可区分物理范式的方法,该方法将已知的物理学与机器学习结合起来,以开发汉堡湍流的闭合模型。我们将1D汉堡系统视为一种原型测试问题,用于建模以对流为主的湍流问题中未解决的术语。我们训练一系列模型,这些模型在后验损失函数上结合了不同程度的物理假设,以测试模型在一系列系统参数(包括粘度,时间和网格分辨率)上的疗效。我们发现,以部分微分方程形式的归纳偏差的约束模型包含已知物理或现有闭合方法会产生高度数据效率,准确和可推广的模型,并且表现优于最先进的基准。以物理信息形式添加结构还为模型带来了一定程度的解释性,可能为封闭建模的未来提供了垫脚石。
translated by 谷歌翻译
这项工作在拆分计算领域迈出了重大步骤,即如何拆分深神经网络以将其早期部分托管在嵌入式设备上,而其余则在服务器上。到目前为止,已经确定了潜在的分裂位置,以利用独特的建筑方面,即基于层尺寸。在此范式下,只有在执行分裂并重新训练整个管道后,才能评估分裂的疗效,从而对所有合理的分裂点在时间方面进行详尽的评估。在这里,我们表明,不仅层的结构确实很重要,而且其中包含的神经元的重要性也很重要。如果神经元相对于正确的班级决策,神经元很重要。因此,应在具有高密度的重要神经元的层后立即施加拆分,以保留流动的信息。根据这个想法,我们提出了可解释的拆分(i-split):通过提供有关该分型在分类准确性方面的表现,事先对其有效实现的可靠性,以确定最合适的分裂点的过程。作为I-Split的另一个重大贡献,我们表明,多类分类问题的分裂点的最佳选择还取决于网络必须处理的特定类别。详尽的实验已在两个网络(VGG16和Resnet-50)以及三个数据集(Tiny-Imagenet-200,Notmnist和胸部X射线肺炎)上进行。源代码可在https://github.com/vips4/i-split上获得。
translated by 谷歌翻译
神经网络校准是深度学习的重要任务,以确保模型预测的信心与真正的正确性可能性之间的一致性。在本文中,我们提出了一种称为Neural夹紧的新的后处理校准方法,该方法通过可学习的通用输入扰动和输出温度扩展参数在预训练的分类器上采用简单的联合输入输出转换。此外,我们提供了理论上的解释,说明为什么神经夹具比温度缩放更好。在CIFAR-100和Imagenet图像识别数据集以及各种深神经网络模型上进行了评估,我们的经验结果表明,神经夹具明显优于最先进的后处理校准方法。
translated by 谷歌翻译
移动网络第五代(5G)的能源消耗是电信行业的主要关注点之一。但是,目前没有一种评估5G基站(BSS)功耗的准确且可进行的方法。在本文中,我们提出了一个新颖的模型,以实现5G多载波BSS功耗的现实表征,该模型以大型数据收集活动为基础。首先,我们定义了允许对多个5G BS产品进行建模的机器学习体系结构。然后,我们利用该框架收集的知识来得出一个现实且可分析的功耗模型,这可以帮助推动理论分析以及功能标准化,开发和优化框架。值得注意的是,我们证明了这种模型具有很高的精度,并且能够捕获节能机制的好处。我们认为,该分析模型是理解5G BSS功耗的基本工具,并准确地优化了网络能源效率。
translated by 谷歌翻译
培训强大的政策对于现实世界中的政策部署至关重要,或者处理不同动态系统中未知动态不匹配。域随机化〜(DR)是一种简单而优雅的方法,可以训练保守的政策,以反对不同的动态系统,而无需有关目标系统参数的专家知识。但是,现有的作品表明,通过DR培训的政策往往保守过度保守,并且在目标领域的表现差。我们的关键见解是,具有不同参数的动态系统为策略提供了不同级别的难度,并且由于策略的发展,在系统中表现良好的难度正在不断变化。如果我们可以为该政策进行适当的困难来积极地对系统进行采样,它将稳定培训过程,并防止政策变得过于保守或过度优势。为了实现这一想法,我们引入了主动动力学偏好(ADP),从而量化了采样系统参数的信息性和密度。 ADP积极选择具有高信息性和低密度的系统参数。我们在四个机器人运动任务中验证我们的方法,并在训练环境和测试环境之间存在各种差异。广泛的结果表明,与几个基线相比,我们的方法对系统不一致具有较高的鲁棒性。
translated by 谷歌翻译
从分布式敏感数据中学习隐私的模型是一个越来越重要的问题,通常在联邦学习环境中提出。最近通过分区的变异推理算法扩展到了非私有联盟学习设置。为了保护隐私,当前的黄金标准称为差异隐私。差异隐私在强大的数学上明确定义的意义上保证了隐私。在本文中,我们介绍了差异化的分区变异推断,这是学习与联合学习环境中贝叶斯后分布的差异近似的第一个通用框架,同时最大程度地减少了通信弹的数量并为数据主体提供差异隐私保证。我们在通用框架中提出了三个替代实现,一个基于单个方面的本地优化,而两个基于扰动全局更新(一种使用联合平均版本,一个将虚拟方添加到协议中),并比较其属性,并比较其属性理论上和经验。我们表明,只要各方都有足够的本地数据,扰动本地优化与简单且复杂的模型效果很好。但是,每个方始终独立保证隐私。相比之下,扰动全局更新与相对简单的模型最有效。鉴于可以访问合适的安全原始词,例如安全聚合或安全的改组,所有各方都可以共同保证隐私。
translated by 谷歌翻译
决策和计划最复杂的任务之一是收集信息。当状态具有高维度,并且无法用参数分布表达其信念时,此任务就会变得更加复杂。尽管国家是高维的,但在许多问题中,其中只有一小部分可能涉及过渡状态和产生观察结果。我们利用这一事实来计算信息理论的预期奖励,共同信息(MI),在国家的较低维度子集中,以提高效率和不牺牲准确性。以前的工作中使用了类似的方法,但专门用于高斯分布,我们在这里将其扩展为一般分布。此外,我们将降低维度降低用于将新状态扩展到上一个的情况下,又不牺牲准确性。然后,我们继续开发以连续的蒙特卡洛(SMC)方式工作的MI估计器,并避免重建未来信念的表面。最后,我们展示了如何将这项工作应用于信息丰富的计划优化问题。然后在模拟主动大满贯问题的模拟中评估这项工作,其中证明了准确性和时序的提高。
translated by 谷歌翻译
Lagrangian和Hamiltonian神经网络(分别是LNN和HNN)编码强诱导偏见,使它们能够显着优于其他物理系统模型。但是,到目前为止,这些模型大多仅限于简单的系统,例如摆和弹簧或单个刚体的身体,例如陀螺仪或刚性转子。在这里,我们提出了一个拉格朗日图神经网络(LGNN),可以通过利用其拓扑来学习刚体的动态。我们通过学习以刚体为刚体的棒的绳索,链条和桁架的动力学来证明LGNN的性能。 LGNN还表现出普遍性 - 在链条上训练了一些细分市场的LGNN具有概括性,以模拟具有大量链接和任意链路长度的链条。我们还表明,LGNN可以模拟看不见的混合动力系统,包括尚未接受过培训的酒吧和链条。具体而言,我们表明LGNN可用于建模复杂的现实世界结构的动力学,例如紧张结构的稳定性。最后,我们讨论了质量矩阵的非对角性性质及其在复杂系统中概括的能力。
translated by 谷歌翻译
基于视频的人重新识别(REID)旨在识别多个非重叠摄像机的给定的行人视频序列。为了汇总视频样本的时间和空间特征,引入了图神经网络(GNN)。但是,现有的基于图的模型(例如STGCN)在节点功能上执行\ textIt {mean}/\ textit {max boming}以获取图表表示,该图表忽略了图形拓扑和节点的重要性。在本文中,我们建议图形池网络(GPNET)学习视频检索的多粒度图表示,其中实现了\ textit {Graph boming layer},以简化图形。我们首先构建了一个多粒图,其节点特征表示由骨架学到的图像嵌入,并且在颞和欧几里得邻域节点之间建立了边缘。然后,我们实现多个图形卷积层以在图上执行邻域聚集。为了下图,我们提出了一个多头全注意图池(MHFAPOOL)层,该图集合了现有节点群集和节点选择池的优势。具体而言,MHFAPOOL将全部注意矩阵的主要特征向量作为聚合系数涉及每个汇总节点中的全局图信息。广泛的实验表明,我们的GPNET在四个广泛使用的数据集(即火星,dukemtmc-veneoreid,ilids-vid and Prid-2011)上实现了竞争结果。
translated by 谷歌翻译
现有的基于视频的人重新识别(REID)的方法主要通过功能提取器和功能聚合器来了解给定行人的外观特征。但是,当不同的行人外观相似时,外观模型将失败。考虑到不同的行人具有不同的步行姿势和身体比例,我们建议学习视频检索的外观功能之外的歧视性姿势功能。具体而言,我们实现了一个两分支的体系结构,以单独学习外观功能和姿势功能,然后将它们串联在一起进行推理。为了学习姿势特征,我们首先通过现成的姿势检测器检测到每个框架中的行人姿势,并使用姿势序列构建时间图。然后,我们利用复发图卷积网络(RGCN)来学习时间姿势图的节点嵌入,该姿势图设计了一种全局信息传播机制,以同时实现框内节点的邻域聚集,并在框架间图之间传递消息。最后,我们提出了一种由节点注意和时间注意的双重意见方法,以从节点嵌入中获得时间图表示,其中采用自我注意机制来了解每个节点和每个帧的重要性。我们在三个基于视频的REID数据集(即火星,Dukemtmc和Ilids-Vid)上验证了所提出的方法,其实验结果表明,学习的姿势功能可以有效地改善现有外观模型的性能。
translated by 谷歌翻译
随着车身可穿戴感应技术的发展,人类活动的识别已成为一个有吸引力的研究领域。借助舒适的电子质地,传感器可以嵌入衣服中,以便可以长期记录人类运动。但是,一个长期存在的问题是如何处理通过相对于身体运动引入的运动人工制品。令人惊讶的是,最近的经验发现表明,与刚性连接的传感器相比,与固定的传感器相比,布置的传感器实际上可以实现更高的活动识别精度,尤其是在从短时间窗口中预测时。在这项工作中,引入了概率模型,其中通过织物传感记录的运动之间的统计距离增加了这种提高的准确性和呼吸。模型的预测在模拟和真实的人类运动捕获实验中得到了验证,很明显,这种反直觉效应是紧密捕获的。
translated by 谷歌翻译
基于模型的步态识别方法通常采用行人步行姿势来识别人类。但是,由于摄像头视图的改变,现有方法并未明确解决人类姿势的较大阶层差异。在本文中,我们建议通过通过低UPPER生成的对抗网络(Lugan)学习全级转换矩阵来为每个单视姿势样本生成多视图姿势序列。通过摄像机成像的先验,我们得出的是,跨视图之间的空间坐标满足了全级矩阵的线性转换,因此,本文采用了对抗性训练来从源姿势学习转换矩阵,并获得目标视图以获得目标。目标姿势序列。为此,我们实现了由图形卷积(GCN)层组成的发电机,完全连接(FC)层和两支分支卷积(CNN)层:GCN层和FC层编码源姿势序列和目标视图,然后是CNN分支最后,分别学习一个三角形基质和上三角基质,最后它们被乘以制定全级转换矩阵。出于对抗训练的目的,我们进一步设计了一个条件鉴别因子,该条件区分姿势序列是真实的还是产生的。为了启用高级相关性学习,我们提出了一个名为Multi尺度超图卷积(HGC)的插件播放模块,以替换基线中的空间图卷积层,该层可以同时模拟联合级别的部分,部分部分 - 水平和身体水平的相关性。在两个大型步态识别数据集(即CASIA-B和OUMVLP置位)上进行的广泛实验表明,我们的方法的表现优于基线模型,并以一个较大的边距基于基于姿势的方法。
translated by 谷歌翻译
建筑行业的机器人可以使用高精度数据捕获来通过不断监视工作进度来降低成本。准确的数据捕获需要在环境中精确的移动机器人定位。在本文中,我们介绍了有关机器人本地化的新颖作品,该工作以墙壁和房间的形式提取了从建筑计划中提取几何,语义以及拓扑信息,并创建了情境图的拓扑和度量语言层(S-图)在环境中导航之前。当机器人在施工环境中导航时,它使用机器人的探光仪和从3D LIDAR测量中提取的平面壁的形式的感觉观测来估算其依靠粒子过滤器方法的姿势,并利用先前构建的情境图和它可用的几何,语义和拓扑信息。我们在将其与基于传统几何的本地化技术进行比较时,在实际持续的施工站点上捕获的模拟和真实数据集中验证了我们的方法。
translated by 谷歌翻译
作为多媒体信息检索中越来越流行的任务,视频瞬间检索(VMR)旨在根据给定的语言查询从未修剪视频中定位目标时刻。以前的大多数方法都在很大程度上取决于众多手动注释(即瞬间边界),在实践中获取非常昂贵。此外,由于不同数据集之间的域间隙,直接将这些预训练的模型应用于看不见的域,这会导致显着的性能下降。在本文中,我们专注于一项新任务:跨域VMR,其中一个域中完全注重数据集(````源域'''),但是感兴趣的域(``目标域'')仅包含未通知的数据集。据我们所知,我们介绍了有关跨域VMR的第一项研究。为了解决这一新任务,我们提出了一个新型的多模式跨域比对(MMCDA)网络,以将注释知识从源域转移到目标域。但是,由于源和目标域之间的域差异以及视频和查询之间的语义差距,直接将经过训练的模型应用于目标域通常会导致性能下降。为了解决这个问题,我们开发了三个新型模块:(i)域对齐模块旨在使每种模式的不同域之间的特征分布对齐; (ii)跨模式对齐模块旨在将视频和查询特征映射到关节嵌入空间中,并将目标域不同模态之间的特征分布对齐; (iii)特定的比对模块试图获得特定帧与给定查询之间的细粒度相似性以进行最佳定位。通过共同训练这三个模块,我们的MMCDA可以学习域不变和语义一致的跨模式表示。
translated by 谷歌翻译
通过查找图像可能不满意的图像来捕获对象检测器的错误行为,这一兴趣很长。在实际应用(例如自动驾驶)中,对于表征除了简单的检测性能要求之外的潜在失败也至关重要。例如,与远处未遗漏的汽车检测相比,错过对靠近自我车辆的行人的侦查通常需要更仔细的检查。在测试时间预测这种潜在失败的问题在文献和基于检测不确定性的传统方法中被忽略了,因为它们对这种错误的细粒度表征不可知。在这项工作中,我们建议将查找“硬”图像作为基于查询的硬图像检索任务的问题进行重新制定,其中查询是“硬度”的特定定义,并提供了一种简单而直观的方法,可以解决此任务大型查询家庭。我们的方法完全是事后的,不需要地面真相注释,独立于检测器的选择,并且依赖于有效的蒙特卡洛估计,该估计使用简单的随机模型代替地面真相。我们通过实验表明,它可以成功地应用于各种查询中,它可以可靠地识别给定检测器的硬图像,而无需任何标记的数据。我们使用广泛使用的视网膜,更快的RCNN,Mask-RCNN和CASCADE MASK-RCNN对象检测器提供有关排名和分类任务的结果。
translated by 谷歌翻译
机器学习(ML)是指根据大量数据预测有意义的输出或对复杂系统进行分类的计算机算法。 ML应用于各个领域,包括自然科学,工程,太空探索甚至游戏开发。本文的重点是在化学和生物海洋学领域使用机器学习。在预测全球固定氮水平,部分二氧化碳压力和其他化学特性时,ML的应用是一种有前途的工具。机器学习还用于生物海洋学领域,可从各种图像(即显微镜,流车和视频记录器),光谱仪和其他信号处理技术中检测浮游形式。此外,ML使用其声学成功地对哺乳动物进行了分类,在特定的环境中检测到濒临灭绝的哺乳动物和鱼类。最重要的是,使用环境数据,ML被证明是预测缺氧条件和有害藻华事件的有效方法,这是对环境监测的重要测量。此外,机器学习被用来为各种物种构建许多对其他研究人员有用的数据库,而创建新算法将帮助海洋研究界更好地理解海洋的化学和生物学。
translated by 谷歌翻译
Starcraft II(SC2)对强化学习(RL)提出了巨大的挑战,其中主要困难包括巨大的状态空间,不同的动作空间和长期的视野。在这项工作中,我们研究了《星际争霸II》全长游戏的一系列RL技术。我们研究了涉及提取的宏观活动和神经网络的层次结构的层次RL方法。我们研究了课程转移培训程序,并在具有4个GPU和48个CPU线的单台计算机上训练代理。在64x64地图并使用限制性单元上,我们对内置AI的获胜率达到99%。通过课程转移学习算法和战斗模型的混合物,我们在最困难的非作战水平内置AI(7级)中获得了93%的胜利率。在本文的扩展版本中,我们改进了架构,以针对作弊水平训练代理商,并在8级,9级和10级AIS上达到胜利率,为96%,97%和94 %, 分别。我们的代码在https://github.com/liuruoze/hiernet-sc2上。为了为我们的工作以及研究和开源社区提供基线,我们将其复制了一个缩放版本的Mini-Alphastar(MAS)。 MAS的最新版本为1.07,可以在具有564个动作的原始动作空间上进行培训。它旨在通过使超参数可调节来在单个普通机器上进行训练。然后,我们使用相同的资源将我们的工作与MAS进行比较,并表明我们的方法更有效。迷你α的代码在https://github.com/liuruoze/mini-alphastar上。我们希望我们的研究能够阐明对SC2和其他大型游戏有效增强学习的未来研究。
translated by 谷歌翻译
我们提供了一种单发图像合成的方法,该方法可以通过倒置配备有强正规化器的准稳定分类器来控制单个图像的操作。我们提出的标题为“魔术”的方法是从预先训练的准稳定分类器中的结构化梯度,以更好地保留输入语义,同时保留其分类精度,从而确保合成中的信誉。与当前使用复杂原语的当前方法来监督该过程或使用注意图作为弱监督信号,魔术汇总了输入上的梯度,这是由导向二进制掩码驱动的,该导向二进制掩码可以实施强大的空间先验。魔术在一个框架上实现了一系列的操作,以实现形状和位置控制,强烈的非刚性形状变形,并在存在重复对象的情况下复制/移动操作,并通过仅需指定二进制指南掩码来使用户对综合的企业控制。我们的研究和发现得到了与最新图像的各种定性比较,从成像网和使用机器感知进行定量分析的相同图像以及对100多名参与者的用户调查来认可我们的合成质量。
translated by 谷歌翻译
黑框模型的鲁棒性研究被认为是基于结构方程和从数据中学到的预测模型的数值模型的必要任务。这些研究必须评估模型的鲁棒性,以实现其输入的可能错误指定(例如,协变量转移)。通过不确定性定量(UQ)的棱镜对黑盒模型的研究通常基于涉及输入上施加的概率结构的灵敏度分析,而ML模型仅由观察到的数据构建。我们的工作旨在通过为这两个范式提供相关且易于使用的工具来统一UQ和ML可解释性方法。为了为鲁棒性研究提供一个通用且易于理解的框架,我们定义了依赖于概率指标之间的瓦斯汀距离的分位数约束和投影的输入信息的扰动,同时保留其依赖性结构。我们表明,可以通过分析解决这个扰动问题。通过等渗多项式近似确保规律性约束会导致更平滑的扰动,这在实践中可能更适合。从UQ和ML领域进行的实际案例研究的数值实验突出了此类研究的计算可行性,并提供了对黑盒模型鲁棒性的局部和全球见解,以输入扰动。
translated by 谷歌翻译
适当的评估和实验设计对于经验科学是基础,尤其是在数据驱动领域。例如,由于语言的计算建模成功,研究成果对最终用户产生了越来越直接的影响。随着最终用户采用差距的减少,需求增加了,以确保研究社区和从业者开发的工具和模型可靠,可信赖,并且支持用户的目标。在该立场论文中,我们专注于评估视觉文本分析方法的问题。我们从可视化和自然语言处理社区中采用跨学科的角度,因为我们认为,视觉文本分析的设计和验证包括超越计算或视觉/交互方法的问题。我们确定了四个关键的挑战群,用于评估视觉文本分析方法(数据歧义,实验设计,用户信任和“大局”问题),并从跨学科的角度为研究机会提供建议。
translated by 谷歌翻译
使用高斯混合模型(GMM)的变异推断能够学习可侵入性目标分布的高度扣除但多模式的近似值。 GMM与最多数百个维度的问题设置特别相关,例如机器人技术,用于对轨迹或联合分布进行建模。这项工作着重于基于GMM的两种非常有效的方法,这些方法既采用独立的自然梯度更新来为单个组件和权重的分类分布。我们首次表明,尽管它们的实际实现和理论保证有所不同,但他们的派生更新是等效的。我们确定了几种设计选择,可以区分两种方法,即在样本选择,自然梯度估计,步骤适应以及信任区域是否得到强制或适应的组件数量方面。我们对这些设计选择进行广泛的消融,并表明它们强烈影响了优化的效率和学习分布的可变性。基于我们的见解,我们提出了对广义框架的新颖实例化,该实例将一阶自然梯度估计与信任区域和组件适应相结合,并且在我们所有实验中都显着优于以前的两种方法。
translated by 谷歌翻译
出于研究目的,在发布大量此类数据集之前,胸部X光片的强大而可靠的匿名化构成了必不可少的步骤。传统的匿名过程是通过在图像中使用黑匣子中遮盖个人信息并删除或替换元信息来执行的。但是,这种简单的措施将生物识别信息保留在胸部X光片中,从而使患者可以通过连锁攻击重新识别。因此,我们看到迫切需要混淆图像中出现的生物特征识别信息。据我们所知,我们提出了第一种基于深度学习的方法,以目标匿名化胸部X光片,同时维护数据实用程序以诊断和机器学习目的。我们的模型架构是三个独立神经网络的组成,当共同使用时,它可以学习能够阻碍患者重新识别的变形场。通过消融研究研究每个组件的个体影响。 CHESTX-RAY14数据集的定量结果显示,在接收器操作特征曲线(AUC)下,患者重新识别从81.8%降低至58.6%,对异常分类性能的影响很小。这表明能够保留潜在的异常模式,同时增加患者隐私。此外,我们将提出的基于学习的深度匿名方法与差异化图像像素化进行比较,并证明了我们方法在解决胸部X光片的隐私性权衡权衡方面的优越性。
translated by 谷歌翻译
人类仍在执行许多高精度(DIS)任务,而这是自动化的理想机会。本文提供了一个框架,该框架使非专家的人类操作员能够教机器人手臂执行复杂的精确任务。该框架使用可变的笛卡尔阻抗控制器来执行从动力学人类示范中学到的轨迹。可以给出反馈以进行交互重塑或加快原始演示。董事会本地化是通过对任务委员会位置的视觉估算来完成的,并通过触觉反馈进行了完善。我们的框架在机器人基准拆卸挑战上进行了测试,该机器人必须执行复杂的精确任务,例如关键插入。结果显示每个操纵子任务的成功率很高,包括盒子中新型姿势的情况。还进行了消融研究以评估框架的组成部分。
translated by 谷歌翻译
为了提倡研究基于深度学习的机器故障检测系统的研究,我们根据微小的声音数据集对拟议系统进行了案例研究。我们的案例研究调查了一个变异自动编码器(VAE),用于增强Valmet AB的小型钻头数据集。一个气门数据集包含134种声音,分为两类:从Valmet AB的一台钻机中记录的“异常”和“正常”,这是瑞典Sundsvall的一家公司,该公司为生物燃料的生产提供设备和流程。使用深度学习模型来检测如此小的声音数据集上的故障钻头通常没有成功。我们采用了VAE来通过合成原始声音的新声音来增加微小数据集中的声音数量。增强数据集是通过将这些合成的声音与原始声音相结合来创建的。我们使用了一个高通滤波器,其通带频率为1000 Hz和一个具有22 \ kern的Passband频率的低通滤波器0.16667EM000 Hz,以在增强数据集中的预处理声音中,然后将其转换为MEL频谱图。然后使用这些MEL频谱图对预训练的2D-CNN ALEXNET进行训练。与使用原始的小声音数据集进行训练预先训练的Alexnet时,使用增强声音数据集将CNN模型的分类结果提高了6.62 \%(94.12 \%(在增强数据集对87.5 \%训练的原始训练时,接受了87.5 \%)数据集)。
translated by 谷歌翻译
植物是动态生物。对于野外所有机器人来说,了解植被的时间变化是一个必不可少的问题。但是,在时间上关联重复的3D植物扫描是具有挑战性的。此过程中的关键步骤是随着时间的推移重新识别和跟踪相同的单个植物组件。以前,这是通过比较其全球空间或拓扑位置来实现的。在这项工作中,我们演示了使用形状功能如何改善颞器官匹配。我们提出了一种无里程碑的形状压缩算法,该算法允许提取叶子的3D形状特征,在少数参数中有效地表征叶片形状和曲率,并使特征空间中各个叶子的关联成为可能。该方法使用主成分分析(PCA)结合了3D轮廓提取和进一步的压缩,以产生形状空间编码,这完全是从数据中学到的,并保留有关边缘轮廓和3D曲率的信息。我们对番茄植物的时间扫描序列的评估表明,结合形状特征可改善颞叶匹配。形状,位置和旋转信息的结合证明了最有用的信息,可以随着时间的推移识别叶子,并产生75%的真正正率,对固定方法提高了15%。这对于机器人作物监测至关重要,这可以实现全面的表型。
translated by 谷歌翻译
在本文中,我们提出了针对无人接地车辆(UGV)的新的控制屏障功能(CBF),该功能有助于避免与运动学(非零速度)障碍物发生冲突。尽管当前的CBF形式已经成功地保证了与静态障碍物的安全/碰撞避免安全性,但动态案例的扩展已获得有限的成功。此外,借助UGV模型,例如Unicycle或自行车,现有CBF的应用在控制方面是保守的,即在某些情况下不可能进行转向/推力控制。从经典的碰撞锥中汲取灵感来避免轨迹规划,我们介绍了其新颖的CBF配方,并具有对独轮车和自行车模型的安全性保证。主要思想是确保障碍物的速度W.R.T.车辆总是指向车辆。因此,我们构建了一个约束,该约束确保速度向量始终避开指向车辆的向量锥。这种新控制方法的功效在哥白尼移动机器人上进行了实验验证。我们将其进一步扩展到以自行车模型的形式扩展到自动驾驶汽车,并在Carla模拟器中的各种情况下证明了避免碰撞。
translated by 谷歌翻译
与2D车道相比,实际3D车道数据很难准确收集。在本文中,我们提出了一种仅使用2D车道标签训练3D车道的新方法,称为弱监督的3D车道检测WS-3D车道。通过在相邻车道上的恒定车道宽度和相等高度的假设,我们间接监督训练中的3D车道高度。为了克服数据收集过程中相机音调动态变化的问题,提出了相机音调自校准方法。在锚固表示中,我们提出了一个具有改进的非限量抑制(NMS)方法的双层锚,该方法使基于锚的方法可以预测两条接近的车道线。实验是在两种监督方法下在3D-LANENEN的基础上进行的。在弱监督的环境下,我们的WS-3D车道的表现优于先前的3D-LANEN:APOLLO 3D合成数据集的F得分上升到92.3%,而F1在3DDLANES上上升到74.5%。同时,在纯监督环境中的WS-3D车道可以提高更多的增量,并且优于最先进的设置。据我们所知,WS-3D车道是在弱监督环境下进行3D车道检测的第一次尝试。
translated by 谷歌翻译
随着智能建筑应用的增长,住宅建筑中的占用信息变得越来越重要。在智能建筑物的范式的背景下,为了广泛的目的,需要这种信息,包括提高能源效率和乘员舒适性。在这项研究中,使用基于电器技术信息的深度学习实施了住宅建筑中的占用检测。为此,提出了一种新型的智能住宅建筑系统占用方法。通过智能计量系统测量的电器,传感器,光和HVAC的数据集用于模拟。为了对数据集进行分类,使用了支持向量机和自动编码器算法。混淆矩阵用于准确性,精度,召回和F1,以证明所提出的方法在占用检测中的比较性能。拟议的算法使用电器的技术信息达到95.7〜98.4%。为了验证占用检测数据,采用主成分分析和T分布的随机邻居嵌入(T-SNE)算法。通过使用占用检测,智能建筑物中可再生能源系统的功耗降低到11.1〜13.1%。
translated by 谷歌翻译