Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
Neural networks are prone to catastrophic forgetting when trained incrementally on different tasks. Popular incremental learning methods mitigate such forgetting by retaining a subset of previously seen samples and replaying them during the training on subsequent tasks. However, this is not always possible, e.g., due to data protection regulations. In such restricted scenarios, one can employ generative models to replay either artificial images or hidden features to a classifier. In this work, we propose Genifer (GENeratIve FEature-driven image Replay), where a generative model is trained to replay images that must induce the same hidden features as real samples when they are passed through the classifier. Our technique therefore incorporates the benefits of both image and feature replay, i.e.: (1) unlike conventional image replay, our generative model explicitly learns the distribution of features that are relevant for classification; (2) in contrast to feature replay, our entire classifier remains trainable; and (3) we can leverage image-space augmentations, which increase distillation performance while also mitigating overfitting during the training of the generative model. We show that Genifer substantially outperforms the previous state of the art for various settings on the CIFAR-100 and CUB-200 datasets.
translated by 谷歌翻译
持续深度学习的领域是一个新兴领域,已经取得了很多进步。但是,同时仅根据图像分类的任务进行了大多数方法,这在智能车辆领域无关。直到最近才提出了班级开展语义分割的方法。但是,所有这些方法都是基于某种形式的知识蒸馏。目前,尚未对基于重播的方法进行调查,这些方法通常在连续的环境中用于对象识别。同时,尽管无监督的语义分割的域适应性获得了很多吸引力,但在持续环境中有关域内收入学习的调查并未得到充分研究。因此,我们工作的目的是评估和调整已建立的解决方案,以连续对象识别语义分割任务,并为连续语义分割的任务提供基线方法和评估协议。首先,我们介绍了类和域内的分割的评估协议,并分析了选定的方法。我们表明,语义分割变化的任务的性质在减轻与图像分类相比最有效的方法中最有效。特别是,在课堂学习中,学习知识蒸馏被证明是至关重要的工具,而在域内,学习重播方法是最有效的方法。
translated by 谷歌翻译
近年来,语义细分领域取得了巨大进展。但是,剩下的一个具有挑战性的问题是,细分模型并未推广到看不见的域。为了克服这个问题,要么必须标记大量涵盖整个域的数据,这些域通常在实践中是不可行的,要么应用无监督的域适应性(UDA),仅需要标记为源数据。在这项工作中,我们专注于UDA,并另外解决了适应单个域,而且针对一系列目标域的情况。这需要机制,以防止模型忘记其先前学习的知识。为了使细分模型适应目标域,我们遵循利用轻质样式转移将标记的源图像样式转换为目标域样式的想法,同时保留源内容。为了减轻源和目标域之间的分布移位,模型在第二步中在传输的源图像上进行了微调。现有的轻重量样式转移方法依赖于自适应实例归一化(ADAIN)或傅立叶变换仍然缺乏性能,并且在常见数据增强(例如颜色抖动)上没有显着改善。这样做的原因是,这些方法并不关注特定于区域或类别的差异,而是主要捕获最突出的样式。因此,我们提出了一个简单且轻巧的框架,该框架结合了两个类条件的ADAIN层。为了提取传输层所需的特定类目标矩,我们使用未过滤的伪标签,与真实标签相比,我们表明这是有效的近似值。我们在合成序列上广泛验证了我们的方法(CACE),并进一步提出了由真实域组成的具有挑战性的序列。 CACE在视觉和定量上优于现有方法。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
实现域适应是有价值的,以将学习知识从标记为CT数据集传输到腹部多器官分段的目标未标记的MR DataSet。同时,非常希望避免目标数据集的高注重成本并保护源数据集的隐私。因此,我们提出了一种有效的无核心无监督域适应方法,用于跨型号腹部多器官分段而不访问源数据集。所提出的框架的过程包括两个阶段。在第一阶段,特征映射统计损失用于对准顶部分段网络中的源和目标特征的分布,并使用熵最小化损耗来鼓励高席位细分。从顶部分段网络输出的伪标签用于指导样式补偿网络生成类似源图像。从中间分割网络输出的伪标签用于监督所需模型的学习(底部分段网络)。在第二阶段,循环学习和像素自适应掩模细化用于进一步提高所需模型的性能。通过这种方法,我们在肝脏,肾脏,左肾肾脏和脾脏的分割中实现了令人满意的性能,骰子相似系数分别为0.884,0.891,0.864和0.911。此外,当存在目标注释数据时,所提出的方法可以很容易地扩展到情况。该性能在平均骰子相似度系数的0.888至0.922增加到0.888至0.922,靠近监督学习(0.929),只有一个标记的MR卷。
translated by 谷歌翻译
我们在本文中解决了增量无监督域适应(IDA)的新问题。我们假设标记的源域和不同的未标记的目标域通过约束逐步观察到与当前域的数据仅一次可用。目标是为当前域概括为所有过去域的准确性。 IDA设置因域之间的突然差异以及包括源域内的过去数据的不可用。受到生成功能重放的概念的启发,我们提出了一种名为特征重放的增量域适应(Frida)的新颖框架,它利用了一个名为域 - 通用辅助分类GaN(DGAC-GaN)的新的增量生成对抗性网络(GAN)来生产域明确的特征表示无缝。对于域对齐,我们提出了一种简单的扩展名为Dann-Ib的流行域对抗神经网络(Dann),鼓励歧视域 - 不变和任务相关的特征学习。 Office-Home,Office-Caltech和Domainnet数据集的实验结果证实,FIDA维护了卓越的稳定性可塑性权衡,而不是文献。
translated by 谷歌翻译
Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation in visual perception for self-driving cars, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.
translated by 谷歌翻译
无监督的域适应性(UDA)旨在减少训练和测试数据之间的域间隙,并在大多数情况下以离线方式进行。但是,在部署过程中可能会连续且不可预测地发生域的变化(例如,天气变化突然变化)。在这种情况下,深度神经网络见证了准确性的急剧下降,离线适应可能不足以对比。在本文中,我们解决了在线域适应(ONDA)进行语义细分。我们设计了一条可逐步或突然转移的域转移的管道,在多雨和有雾的情况下,我们对其进行了评估。我们的实验表明,我们的框架可以有效地适应部署期间的新域,而不受灾难性遗忘以前的域的影响。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
Collecting well-annotated image datasets to train modern machine learning algorithms is prohibitively expensive for many tasks. An appealing alternative is to render synthetic data where ground-truth annotations are generated automatically. Unfortunately, models trained purely on rendered images often fail to generalize to real images. To address this shortcoming, prior work introduced unsupervised domain adaptation algorithms that attempt to map representations between the two domains or learn to extract features that are domain-invariant. In this work, we present a new approach that learns, in an unsupervised manner, a transformation in the pixel space from one domain to the other. Our generative adversarial network (GAN)-based model adapts source-domain images to appear as if drawn from the target domain. Our approach not only produces plausible samples, but also outperforms the state-of-the-art on a number of unsupervised domain adaptation scenarios by large margins. Finally, we demonstrate that the adaptation process generalizes to object classes unseen during training.
translated by 谷歌翻译
在过去的十年中,许多深入学习模型都受到了良好的培训,并在各种机器智能领域取得了巨大成功,特别是对于计算机视觉和自然语言处理。为了更好地利用这些训练有素的模型在域内或跨域转移学习情况下,提出了知识蒸馏(KD)和域适应(DA)并成为研究亮点。他们旨在通过原始培训数据从训练有素的模型转移有用的信息。但是,由于隐私,版权或机密性,原始数据并不总是可用的。最近,无数据知识转移范式吸引了吸引人的关注,因为它涉及从训练有素的模型中蒸馏宝贵的知识,而无需访问培训数据。特别是,它主要包括无数据知识蒸馏(DFKD)和源无数据域适应(SFDA)。一方面,DFKD旨在将域名域内知识从一个麻烦的教师网络转移到一个紧凑的学生网络,以进行模型压缩和有效推论。另一方面,SFDA的目标是重用存储在训练有素的源模型中的跨域知识并将其调整为目标域。在本文中,我们对知识蒸馏和无监督域适应的视角提供了全面的数据知识转移,以帮助读者更好地了解目前的研究状况和想法。分别简要审查了这两个领域的应用和挑战。此外,我们对未来研究的主题提供了一些见解。
translated by 谷歌翻译
Despite significant advances, the performance of state-of-the-art continual learning approaches hinges on the unrealistic scenario of fully labeled data. In this paper, we tackle this challenge and propose an approach for continual semi-supervised learning -- a setting where not all the data samples are labeled. An underlying issue in this scenario is the model forgetting representations of unlabeled data and overfitting the labeled ones. We leverage the power of nearest-neighbor classifiers to non-linearly partition the feature space and learn a strong representation for the current task, as well as distill relevant information from previous tasks. We perform a thorough experimental evaluation and show that our method outperforms all the existing approaches by large margins, setting a strong state of the art on the continual semi-supervised learning paradigm. For example, on CIFAR100 we surpass several others even when using at least 30 times less supervision (0.8% vs. 25% of annotations).
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
卷积神经网络(CNN)已经实现了医学图像细分的最先进性能,但需要大量的手动注释进行培训。半监督学习(SSL)方法有望减少注释的要求,但是当数据集大小和注释图像的数量较小时,它们的性能仍然受到限制。利用具有类似解剖结构的现有注释数据集来协助培训,这有可能改善模型的性能。然而,由于目标结构的外观不同甚至成像方式,跨解剖结构域的转移进一步挑战。为了解决这个问题,我们提出了跨解剖结构域适应(CS-CADA)的对比度半监督学习,该学习适应一个模型以在目标结构域中细分相似的结构,这仅需要通过利用一组现有现有的现有的目标域中的限制注释源域中相似结构的注释图像。我们使用特定领域的批归归量表(DSBN)来单独地标准化两个解剖域的特征图,并提出跨域对比度学习策略,以鼓励提取域不变特征。它们被整合到一个自我兼容的均值老师(SE-MT)框架中,以利用具有预测一致性约束的未标记的目标域图像。广泛的实验表明,我们的CS-CADA能够解决具有挑战性的跨解剖结构域移位问题,从而在视网膜血管图像和心脏MR图像的帮助下,在X射线图像中准确分割冠状动脉,并借助底底图像,分别仅给定目标域中的少量注释。
translated by 谷歌翻译
In this paper, we investigate a challenging unsupervised domain adaptation setting -unsupervised model adaptation. We aim to explore how to rely only on unlabeled target data to improve performance of an existing source prediction model on the target domain, since labeled source data may not be available in some real-world scenarios due to data privacy issues. For this purpose, we propose a new framework, which is referred to as collaborative class conditional generative adversarial net to bypass the dependence on the source data. Specifically, the prediction model is to be improved through generated target-style data, which provides more accurate guidance for the generator. As a result, the generator and the prediction model can collaborate with each other without source data. Furthermore, due to the lack of supervision from source data, we propose a weight constraint that encourages similarity to the source model. A clustering-based regularization is also introduced to produce more discriminative features in the target domain. Compared to conventional domain adaptation methods, our model achieves superior performance on multiple adaptation tasks with only unlabeled target data, which verifies its effectiveness in this challenging setting.
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
最小化分布匹配损失是在图像分类的背景下的域适应的原则方法。但是,在适应分割网络中,它基本上被忽略,目前由对抗模型主导。我们提出了一系列损失函数,鼓励在网络输出空间中直接核心密度匹配,直至从未标记的输入计算的一些几何变换。我们的直接方法而不是使用中间域鉴别器,而不是使用单一损失统一分发匹配和分段。因此,它通过避免额外的对抗步骤来简化分段适应,同时提高培训的质量,稳定性和效率。我们通过网络输出空间的对抗培训使我们对最先进的分段适应的方法并置。在对不同磁共振图像(MRI)方式相互调整脑细分的具有挑战性的任务中,我们的方法在准确性和稳定性方面取得了明显的结果。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译