盲源分离(BSS)算法是无监督的方法,通过允许物理有意义的数据分解,它们是高光谱数据分析的基石。 BSS问题不足,解决方案需要有效的正则化方案,以更好地区分来源并产生可解释的解决方案。为此,我们研究了一种半监督的源分离方法,在这种方法中,我们将预测的交替最小二乘算法与基于学习的正则化方案结合在一起。在本文中,我们专注于通过使用生成模型来限制混合矩阵属于学习的歧管。总而言之,我们表明,这允许具有创新的BSS算法,具有提高的精度,可提供物理上可解释的解决方案。在涉及强噪声,高度相关的光谱和不平衡来源的挑战性场景中,对现实的高光谱天体物理数据进行了测试。结果突出了在减少来源之间的泄漏之前,学到的重大好处,这可以使总体上更好的分解。
translated by 谷歌翻译
人工智能(AI)系统越来越多地用于提供建议以促进人类决策。尽管大量工作探讨了如何优化AI系统以产生准确且公平的建议以及如何向人类决策者提供算法建议,但在这项工作中,我们提出了一个不同的基本问题:何时应该提供建议?由于当前不断提供算法建议的局限性的限制,我们提出了以双向方式与人类用户互动的AI系统的设计。我们的AI系统学习使用过去的人类决策为政策提供建议。然后,对于新案例,学识渊博的政策利用人类的意见来确定算法建议将是有用的案例,以及人类最好单独决定的情况。我们通过使用美国刑事司法系统的数据对审前释放决策进行大规模实验来评估我们的方法。在我们的实验中,要求参与者评估被告违反其释放条款的风险,如果释放,并受到不同建议方法的建议。结果表明,与固定的非交互式建议方法相比,我们的交互式辅助方法可以在需要时提供建议,并显着改善人类决策。我们的方法在促进人类学习,保留人类决策者的互补优势以及对建议的更积极反应方面具有额外的优势。
translated by 谷歌翻译
计算模型已成为定量科学中的强大工具,以了解随时间发展的复杂系统的行为。但是,它们通常包含可能无法从理论中获得的值,但需要从数据中推断出其值。社会科学,经济学或计算流行病学中的模型尤其如此。然而,许多当前参数估计方法在数学上涉及,并且运行速度慢。在本文中,我们提出了一种计算简单且快速的方法,可以使用神经微分方程检索模型参数的准确概率密度。我们提出了一条管道,该管道包含多代理模型,该模型充当了普通或随机微分方程系统的前向求解器以及一个神经网络,然后从模型生成的数据中提取参数。这两个组合创建了一个强大的工具,即使对于非常大的系统,也可以快速估计模型参数的密度。我们演示了感染传播的SIR模型的合成时间序列数据的方法,并对网络上的Harris-Wilson经济活动模型进行了深入的分析,代表了非凸面问题。对于后者,我们将我们的方法应用于大伦敦的合成数据和经济活动数据。我们发现,我们的方法比先前使用经典技术对同一数据集进行的研究更准确地校准了数量级,同时运行的速度快于195至390倍。
translated by 谷歌翻译
皮质假体是植入视觉皮层中的设备,试图通过电刺激神经元来恢复视力失去视力。当前,这些设备提供的视觉是有限的,并且准确预测刺激引起的视觉感知是一个开放的挑战。我们建议通过利用“大脑样”卷积神经网络(CNN)来应对这一挑战,这些卷积神经网络已成为视觉系统的有前途的模型。为了研究适应大脑样的CNN来建模视觉假体的可行性,我们开发了一种概念验证模型,以预测电刺激引起的感知。我们表明,CNN激活的神经学启发的解码会产生定性准确的磷酸,可与实际患者报道的磷酸相媲美。总体而言,这是建立类似大脑的电刺激模型的重要第一步,这可能不仅可以提高皮质假体提供的视力质量,而且还可以进一步提高我们对神经视力守则的理解。
translated by 谷歌翻译
时间序列数据出现在各种应用程序中,例如智能运输和环境监测。时间序列分析的基本问题之一是时间序列预测。尽管最近的深度时间序列预测方法取得了成功,但它们仍需要足够的历史价值观察才能进行准确的预测。换句话说,输出长度(或预测范围)与输入和输出长度之和的比率应足够低(例如,0.3)。随着比率的增加(例如,到0.8),预测准确性的不确定性显着增加。在本文中,我们从理论和经验上都表明,通过将相关时间序列检索作为参考文献可以有效地降低不确定性。在理论分析中,我们首先量化不确定性,并显示其与平方误差(MSE)的连接。然后,我们证明,带有参考的模型比没有参考的模型更容易学习,因为检索到的参考可能会降低不确定性。为了凭经验证明基于检索的时间序列预测模型的有效性,我们引入了一种简单而有效的两阶段方法,称为“保留”,该方法由关系检索和内容合成组成。我们还表明,可以轻松地适应时空时间序列和时间序列插补设置。最后,我们评估了现实世界数据集上的延迟,以证明其有效性。
translated by 谷歌翻译
解释神经网络模型是一项具有挑战性的任务,至今仍无法解决。对于高维和复杂数据尤其如此。通过目前的工作,我们介绍了两个概念,以了解神经网络的概念观点,特别是一个值得称赞的和象征性的观点。两者都提供了新颖的分析方法,以使人AI分析师能够更深入地了解网络神经元所捕获的知识。我们通过对ImageNet和Fruit-360数据集的不同实验来测试新观点的概念表达。此外,我们展示了观点在多大程度上允许量化不同学习体系结构的概念相似性。最后,我们证明了如何将概念观点应用于神经元对人类可理解规则的绑架学习。总而言之,通过我们的工作,我们为全球解释神经网络模型的最相关任务做出了贡献。
translated by 谷歌翻译
大脑区域之间的功能连通性(FC)通常是通过应用于功能磁共振成像(FMRI)数据的统计依赖度量来估计的。所得的功能连接矩阵(FCM)通常用于表示脑图的邻接矩阵。最近,图形神经网络(GNN)已成功应用于FCM,以学习脑图表示。但是,现有GNN方法的一个普遍局限性是,它们要求在模型训练之前知道图形邻接矩阵。因此,隐含地假设数据的基础依赖性结构已知。不幸的是,对于fMRI而言,情况并非如此,因为哪种统计度量的选择最能代表数据的依赖性结构是非平凡的。同样,大多数GNN应用于功能磁共振成像,FC都会随着时间的推移而静态,这与神经科学的证据相反,表明功能性脑网络是随时间变化且动态的。这些复合问题可能会对GNN学习脑图表示的能力产生不利影响。作为解决方案,我们提出了动态大脑图结构学习(DBGSL),这是一种学习fMRI数据最佳时变依赖性结构的监督方法。具体而言,DBGSL通过应用于大脑区域嵌入的时空注意力从fMRI时间表中学习了动态图。然后将所得的图馈送到空间GNN中,以学习分类的图表。大型休息状态以及性别分类任务的fMRI数据集的实验表明,DBGSL可以实现最新的性能。此外,对学习动态图的分析突出了与现有神经科学文献的发现相符的预测相关大脑区域。
translated by 谷歌翻译
应用于物理工程系统的纯粹数据驱动的深神经网络(DNN)可以推断出违反物理定律的关系,从而导致意外后果。为了应对这一挑战,我们提出了一个基于物理模型的DNN框架,即Phy-Taylor,该框架以物理知识加速了学习合规的表示。 Phy-Taylor框架做出了两个关键的贡献。它引入了一个新的建筑物理兼容神经网络(PHN),并具有新颖的合规机制,我们称{\ em物理学引导的神经网络编辑\/}。 PHN的目的是直接捕获受物质量的启发的非线性,例如动能,势能,电力和空气动力阻力。为此,PHN增强了具有两个关键组成部分的神经网络层:(i)泰勒级数序列扩展的非线性功能捕获物理知识的扩展,以及(ii)缓解噪声影响的抑制器。神经网络编辑机制进一步修改了网络链接和激活功能与物理知识一致。作为扩展,我们还提出了一个自我校正的Phy-Taylor框架,该框架介绍了两个其他功能:(i)基于物理模型的安全关系学习,以及(ii)在违反安全性的情况下自动输出校正。通过实验,我们表明(通过直接表达难以学习的非线性并通过限制依赖性)Phy-Taylor的特征较少的参数和明显加速的训练过程,同时提供增强的模型稳健性和准确性。
translated by 谷歌翻译
赤道等离子体气泡(EPB)是低密度血浆的羽毛,它们从F层的底部升至Exosphere。 EPB是无线电波闪烁的已知原因,可以降低与航天器的通信。我们构建了一个随机的森林回归剂,以预测和预测IBI处理器在船上检测到的EPB [0-1]的可能性。我们使用从2014年到2021年的8年群数据,并将数据从时间序列转换为5维空间,该空间包括纬度,经度,MLT,年份和年度。我们还增加了KP,F10.7厘米和太阳风速。关于地理位置,当地时间,季节和太阳活动的EPB的观察主要与现有工作一致,而链接的地磁活动尚不清楚。该预测的精度为88%,并且在EPB特异性时空尺度上的性能很好。这证明了XGBoost方法能够成功捕获群EPB的气候和每日变异性。由于电离层内的局部和随机特征,捕获每日方差长期以来一直逃避研究人员。我们利用Shapley值来解释该模型并深入了解EPB的物理学。我们发现,随着太阳能速度的增加,EPB的概率降低。我们还确定了EPB概率周围的尖峰。这两个见解直接源自XGBoost和Shapley技术。
translated by 谷歌翻译
最近的研究表明,减少时间和空间冗余都是有效的视频识别方法的有效方法,例如,将大多数计算分配给与任务相关的框架或每个帧中最有价值的图像区域。但是,在大多数现有的作品中,任何一种类型的冗余通常都是用另一个缺失建模的。本文探讨了在最近提出的ADAFOCUSV2算法之上的时空动态计算的统一配方,从而有助于改进的ADAFOCUSV3框架。我们的方法仅在一些小但有益的3D视频立方体上激活昂贵的高容量网络来降低计算成本。这些立方体是从框架高度,宽度和视频持续时间形成的空间中裁剪的,而它们的位置则以每样本样本为基础的轻加权政策网络自适应地确定。在测试时间,与每个视频相对应的立方体的数量是动态配置的,即,对视频立方体进行顺序处理,直到产生足够可靠的预测为止。值得注意的是,可以通过近似可插入深度特征的插值来有效地训练adafocusv3。六个基准数据集(即ActivityNet,FCVID,Mini-Kinetics,Something Something V1&V2和潜水48)上的广泛经验结果表明,我们的模型比竞争性基线要高得多。
translated by 谷歌翻译