成功的深度学习模型往往涉及培训具有比训练样本数量更多的参数的神经网络架构。近年来已经广泛研究了这种超分子化的模型,并且通过双下降现象和通过优化景观的结构特性,从统计的角度和计算视角都建立了过分统计化的优点。尽管在过上分层的制度中深入学习架构的显着成功,但也众所周知,这些模型对其投入中的小对抗扰动感到高度脆弱。即使在普遍培训的情况下,它们在扰动输入(鲁棒泛化)上的性能也会比良性输入(标准概括)的最佳可达到的性能更糟糕。因此,必须了解如何从根本上影响稳健性的情况下如何影响鲁棒性。在本文中,我们将通过专注于随机特征回归模型(具有随机第一层权重的两层神经网络)来提供超分度化对鲁棒性的作用的精确表征。我们考虑一个制度,其中样本量,输入维度和参数的数量彼此成比例地生长,并且当模型发生前列地训练时,可以为鲁棒泛化误差导出渐近精确的公式。我们的发达理论揭示了过分统计化对鲁棒性的非竞争效果,表明对于普遍训练的随机特征模型,高度公正化可能会损害鲁棒泛化。
translated by 谷歌翻译
我提出了长期因果推断的内核脊回归估计,其中包含随机治疗和短期替代品的短期实验数据集与包含短期替代和长期结果的长期观测数据集融合。在核矩阵操作方面,我提出了治疗效果,剂量反应和反事实分布的估算方法。我允许协变量,治疗和替代品是离散的或连续的,低,高或无限的尺寸。对于长期治疗效果,我证明$ \ sqrt {n} $一致性,高斯近似和半占用效率。对于长期剂量反应,我证明了具有有限样品速率的均匀稠度。对于长期反事实分布,我证明了分布的收敛性。
translated by 谷歌翻译
数据驱动模型发现中的中央挑战是存在隐藏或潜伏的变量,这些变量不会直接测量,而是动态重要。 TAKENS的定理提供了在可能随时间延迟信息中增加这些部分测量的条件,导致吸引物,这是对原始全状态系统的扩散逻辑。然而,回到原始吸引子的坐标变换通常是未知的,并且学习嵌入空间中的动态仍然是几十年的开放挑战。在这里,我们设计自定义深度AutoEncoder网络,以学习从延迟嵌入空间的坐标转换到一个新的空间,其中可以以稀疏,封闭的形式表示动态。我们在Lorenz,R \“Ossler和Lotka-Volterra系统上,从单个测量变量的学习动态展示了这种方法。作为一个具有挑战性的例子,我们从混乱的水车视频中提取的单个标量变量中学到一个洛伦兹类似物得到的建模框架结合了深入的学习来揭示可解释建模的非线性动力学(SINDY)的揭示有效坐标和稀疏识别。因此,我们表明可以同时学习闭合模型和部分的坐标系观察到的动态。
translated by 谷歌翻译
HyperParameter在监督机器学习算法的拟合中起着重要作用。但是,它可以同时计算所有可调谐的超参数,特别是对于大数据集来调整所有可调谐的超参数昂贵。在本文中,我们给出了通过回忆程序估算的普遍同参数重要性的定义。根据重要性,然后可以更有效地在整个数据集上调整Quand参数。我们从理论上显示了对数据子集的建议重要性与在弱势条件下的人口数据中的一致性一致。数值实验表明,建议的重要性是一致的,可以节省大量的计算资源。
translated by 谷歌翻译
神经网络的架构和参数通常独立优化,这需要每当修改体系结构时对参数的昂贵再次再次再次进行验证。在这项工作中,我们专注于在不需要昂贵的再培训的情况下越来越多。我们提出了一种在训练期间添加新神经元的方法,而不会影响已经学到的内容,同时改善了培训动态。我们通过最大化新重量的梯度来实现后者,并通过奇异值分解(SVD)有效地找到最佳初始化。我们称这种技术渐变最大化增长(Gradmax),并展示其各种视觉任务和架构的效力。
translated by 谷歌翻译
我们呈现SeveryGan,一种能够从单个输入示例自动生成砖纹理映射的方法。与大多数现有方法相比,专注于解决合成问题,我们的工作同时解决问题,合成和涤纶性。我们的关键思想是认识到,通过越野落扩展技术训练的生成网络内的潜伏空间产生具有在接缝交叉点的连续性的输出,然后可以通过裁剪中心区域进入彩色图像。由于不是潜在空间的每个值都有有效的来产生高质量的输出,因此我们利用鉴别者作为能够在采样过程中识别无伪纹理的感知误差度量。此外,与之前的深度纹理合成的工作相比,我们的模型设计和优化,以便使用多层纹理表示,使由多个地图组成的纹理,例如Albedo,法线等。我们广泛地测试网络的设计选择架构,丢失功能和采样参数。我们在定性和定量上展示我们的方法优于以前的方法和适用于不同类型的纹理。
translated by 谷歌翻译
尽管最近通过剩余网络的代表学习中的自我监督方法取得了进展,但它们仍然对ImageNet分类基准进行了高度的监督学习,限制了它们在性能关键设置中的适用性。在MITROVIC等人的现有理论上洞察中建立2021年,我们提出了RELICV2,其结合了明确的不变性损失,在各种适当构造的数据视图上具有对比的目标。 Relicv2在ImageNet上实现了77.1%的前1个分类准确性,使用线性评估使用Reset50架构和80.6%,具有较大的Reset型号,优于宽边缘以前的最先进的自我监督方法。最值得注意的是,RelicV2是使用一系列标准Reset架构始终如一地始终优先于类似的对比较中的监督基线的第一个表示学习方法。最后,我们表明,尽管使用Reset编码器,Relicv2可与最先进的自我监控视觉变压器相媲美。
translated by 谷歌翻译
该行业许多领域的自动化越来越多地要求为检测异常事件设计有效的机器学习解决方案。随着传感器的普遍存在传感器监测几乎连续地区的复杂基础设施的健康,异常检测现在可以依赖于以非常高的频率进行采样的测量,从而提供了在监视下的现象的非常丰富的代表性。为了充分利用如此收集的信息,观察不能再被视为多变量数据,并且需要一个功能分析方法。本文的目的是探讨近期对实际数据集的功能设置中异常检测技术的性能。在概述最先进的和视觉描述性研究之后,比较各种异常检测方法。虽然功能设置中的异常分类(例如,形状,位置)在文献中记录,但为所识别的异常分配特定类型似乎是一个具有挑战性的任务。因此,鉴于模拟研究中的这些突出显示类型,现有方法的强度和弱点是基准测试。接下来在两个数据集上评估异常检测方法,与飞行中的直升机监测和建筑材料的光谱相同有关。基准分析由从业者的建议指导结束。
translated by 谷歌翻译
新一代无线技术,健身跟踪器和带嵌入式传感器的设备可能对医疗系统和生活质量产生重大影响。在这些设备中考虑的最重要方面是所产生的数据和功耗的准确性。可以监控的许多事件,而明显简单,可能无法通过配备嵌入式传感器的设备易于检测和识别,尤其是在具有低计算能力的设备上。众所周知,深度学习减少了对贡献识别不同目标类别的特征的研究。在这项工作中,我们提供了一种适用于摆动板的便携式和电池供电的微控制器。摆动板是低成本的设备,可用于传感器训练,以避免踝关节伤害或受伤后的康复过程的一部分。通过使用基于深度学习的认知技术来实施运动识别过程。为了降低功耗,我们添加了一个适应性层,它动态管理设备的硬件和软件配置,以在运行时调整到所需的操作模式。我们的实验结果表明,将节点配置调整为运行时的工作量可以节省高达60%的功耗。在自定义数据集上,我们的优化和量化的神经网络达到了大于97%的精度值,用于检测摆动板上的一些特定体育锻炼。
translated by 谷歌翻译
用于未知非线性系统的学习和合成稳定控制器是现实世界和工业应用的具有挑战性问题。 Koopman操作员理论允许通过直线系统和非线性控制系统的镜头通过线性系统和非线性控制系统的镜头来分析非线性系统。这些方法的关键思想,在于将非线性系统的坐标转换为Koopman可观察,这是允许原始系统(控制系统)作为更高尺寸线性(双线性控制)系统的坐标。然而,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是稳定的,因此,不保证稳定反馈控制的存在,这对于许多真实世界的应用来说是至关重要的。同时识别基于这些可稳定的Koopman的双线性控制系统以及相关的Koopman可观察到仍然是一个开放的问题。在本文中,我们提出了一个框架,以通过同时学习为基于Koopman的底层未知的非线性控制系统以及基于Koopman的控制Lyapunov函数(CLF)来识别和构造这些可稳定的双线性模型及其相关的可观察能力。双线性模型使用学习者和伪空。我们提出的方法从而为非线性控制系统具有未知动态的非线性控制系统提供了可证明的全球渐近稳定性的保证。提供了数值模拟,以验证我们提出的稳定反馈控制器为未知的非线性系统的效力。
translated by 谷歌翻译