在室内和GPS拒绝环境中的无线移动设备或机器人的本地化是一个难题,特别是在传统摄像机和基于LIDAR的替代感测和本地化模式可能失败的动态场景中。我们提出了一种用于估计移动机器人的位置与在环境中部署的静态无线传感器节点(WSN)相关的方法。该方法采用新的粒子滤波器,其使用在到达方向(DOA)估计的高斯概率与移动机器人的移动模型结合使用的高斯概率来更新其权重。通过广泛的模拟和公共现实世界测量数据集,在准确性和计算效率方面评估和验证所提出的方法,与标准的最先进的本地化方法相比。结果显示了通过高计算效率平衡的高仪表级定位精度,使其能够在线使用,而无需为基于典型指纹的定位算法中的专用离线阶段使用。
translated by 谷歌翻译
用于未知非线性系统的学习和合成稳定控制器是现实世界和工业应用的具有挑战性问题。 Koopman操作员理论允许通过直线系统和非线性控制系统的镜头通过线性系统和非线性控制系统的镜头来分析非线性系统。这些方法的关键思想,在于将非线性系统的坐标转换为Koopman可观察,这是允许原始系统(控制系统)作为更高尺寸线性(双线性控制)系统的坐标。然而,对于非线性控制系统,通过应用基于Koopman操作员的学习方法获得的双线性控制模型不一定是稳定的,因此,不保证稳定反馈控制的存在,这对于许多真实世界的应用来说是至关重要的。同时识别基于这些可稳定的Koopman的双线性控制系统以及相关的Koopman可观察到仍然是一个开放的问题。在本文中,我们提出了一个框架,以通过同时学习为基于Koopman的底层未知的非线性控制系统以及基于Koopman的控制Lyapunov函数(CLF)来识别和构造这些可稳定的双线性模型及其相关的可观察能力。双线性模型使用学习者和伪空。我们提出的方法从而为非线性控制系统具有未知动态的非线性控制系统提供了可证明的全球渐近稳定性的保证。提供了数值模拟,以验证我们提出的稳定反馈控制器为未知的非线性系统的效力。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
近几十年来,Camera-IMU(惯性测量单元)传感器融合已经过度研究。已经提出了具有自校准的运动估计的许多可观察性分析和融合方案。然而,它一直不确定是否在一般运动下观察到相机和IMU内在参数。为了回答这个问题,我们首先证明,对于全球快门Camera-IMU系统,所有内在和外在参数都可以观察到未知的地标。鉴于此,滚动快门(RS)相机的时间偏移和读出时间也证明是可观察到的。接下来,为了验证该分析并解决静止期间结构无轨滤波器的漂移问题,我们开发了一种基于关键帧的滑动窗滤波器(KSWF),用于测量和自校准,它适用于单眼RS摄像机或立体声RS摄像机。虽然关键帧概念广泛用于基于视觉的传感器融合,但对于我们的知识,KSWF是支持自我校准的首先。我们的模拟和实际数据测试验证了,可以使用不同运动的机会主义地标的观察来完全校准相机-IMU系统。实际数据测试确认了先前的典故,即保持状态矢量的地标可以弥补静止漂移,并显示基于关键帧的方案是替代治疗方法。
translated by 谷歌翻译
我们呈现Nureality,一个虚拟现实'VR'环境,旨在测试车辆行为在城市交叉路口自主车辆和行人之间的相互作用中沟通意图的效果。在这个项目中,我们专注于表达行为作为行人的手段,即易于认识到AV运动的潜在意图。 VR是用于测试这些情况的理想工具,因为它可以被沉浸,并将受试者放入这些潜在的危险情景中而没有风险。 Nureality提供了一种新颖的和沉浸式虚拟现实环境,包括众多视觉细节(道路和建筑纹理,停放的汽车,摇曳的树肢)以及听觉细节(鸟儿唧唧喳喳,距离距离的汽车)。在这些文件中,我们呈现Nureality环境,其10个独特的车辆行为场景,以及每个场景的虚幻引擎和Autodesk Maya源文件。这些文件在www.nureality.org上公开发布为开源,以支持学术界,研究临界公平互动。
translated by 谷歌翻译
了解场景是自主导航车辆的关键,以及在线将周围环境分段为移动和非移动物体的能力是这项任务的中央成分。通常,基于深度学习的方法用于执行移动对象分段(MOS)。然而,这些网络的性能强烈取决于标记培训数据的多样性和数量,可以获得昂贵的信息。在本文中,我们提出了一种自动数据标记管道,用于3D LIDAR数据,以节省广泛的手动标记工作,并通过自动生成标记的训练数据来提高现有的基于学习的MOS系统的性能。我们所提出的方法通过批量处理数据来实现数据。首先利用基于占用的动态对象拆除以粗略地检测可能的动态物体。其次,它提取了提案中的段,并使用卡尔曼滤波器跟踪它们。基于跟踪的轨迹,它标记了实际移动的物体,如驾驶汽车和行人。相反,非移动物体,例如,停放的汽车,灯,道路或建筑物被标记为静态。我们表明,这种方法允许我们高效地标记LIDAR数据,并将我们的结果与其他标签生成方法的结果进行比较。我们还使用自动生成的标签培训深度神经网络,并与在同一数据上的手动标签上接受过的手动标签的培训相比,实现了类似的性能,以及使用我们方法生成的标签的其他数据集时更好的性能。此外,我们使用不同的传感器评估我们在多个数据集上的方法,我们的实验表明我们的方法可以在各种环境中生成标签。
translated by 谷歌翻译
随着商业深度传感器和3D扫描仪的最近可用性和可承受能力,越来越多的3D(即RGBD,点云)数据集已被宣传以促进3D计算机视觉的研究。但是,现有的数据集覆盖相对较小的区域或具有有限的语义注释。对城市规模3D场景的细粒度理解仍处于起步阶段。在本文中,我们介绍了Sensaturban,一个城市规模的UAV摄影测量点云数据集,包括从三个英国城市收集的近30亿积分,占地7.6公里^ 2。 DataSet中的每个点已标记为具有细粒度的语义注释,导致数据集是上一个现有最大摄影测量点云数据集的三倍的三倍。除了诸如道路和植被等诸如道路和植被的常见类别之外,我们的数据集还包含包括轨道,桥梁和河流的城市水平类别。基于此数据集,我们进一步构建了基准,以评估最先进的分段算法的性能。特别是,我们提供了全面的分析,确定了限制城市规模点云理解的几个关键挑战。数据集可在http://point-cloud-analysis.cs.ox.ac.uk中获取。
translated by 谷歌翻译
在这项工作中,我们介绍了一种基于双季度的单眼手眼校准的方法。由于单手术机制的非度量缩放转换,除了旋转和翻译校准之外,还必须估计缩放因子。为此,我们得出了一种二次约束的二次程序,允许组合估计所有外本校准参数。由于其紧凑的表示,使用双季度导致低运行时间。我们的问题配方进一步允许同时为相同传感器设置的不同序列估计多个缩放。基于我们的问题制定,我们派生了,快速的本地和全球最佳的解决方法。最后,评估了我们的算法,并与最先进的模拟和实际数据的方法进行了评估,例如,EUROC MAV数据集。
translated by 谷歌翻译
虽然已经提出了用于国家估计的利用现有LIE组结构的许多作品,但特别是不变的扩展卡尔曼滤波器(IEKF),少数论文解决了允许给定系统进入IEKF框架的组结构的构造,即制造动态群体染色和观察不变。在本文中,我们介绍了大量系统,包括涉及在实践中遇到的导航车辆的大多数问题。对于那些系统,我们介绍一种新的方法,系统地为状态空间提供组结构,包括诸如偏差的车身框架的载体。我们使用它来派生与线性观察者或过滤器那些类似的观察者。建议的统一和多功能框架包括IHKF已经成功的所有系统,改善了用于传感器偏差的惯性导航的最新的“不完美”IEKF,并且允许寻址新颖的示例,如GNSS天线杆臂估计。
translated by 谷歌翻译
最近,从热图像的深度和自我运动的自我监督学习在具有挑战性的情景下,热量图像的深度和自我运动的学习表现出强大的鲁棒性和可靠性。然而,诸如弱对比度,模糊边缘和噪声阻碍的固有的热图像属性,以产生从热图像产生有效的自我监督。因此,大多数研究依赖于额外的自我监督源,例如LOT-LIT RGB图像,生成模型和LIDAR信息。在本文中,我们对热图像特性进行了深入的分析,从而从热图像退化自我监督。基于分析,我们提出了一种有效的热图像映射方法,其显着增加了图像信息,例如整体结构,对比度和细节,同时保持时间一致性。所提出的方法显示出比以前的最先进的网络的表现优于优势和姿势,而不利用额外的RGB引导。
translated by 谷歌翻译