已证明无模型的策略学习能够学习操纵政策,可以使用单步操作原始人来解决长期的视野任务。但是,培训这些政策是一个耗时的过程,需要大量数据。我们提出了局部动力学模型(LDM),该模型有效地学习了这些操纵原始基底的状态转换函数。通过将LDM与无模型的政策学习相结合,我们可以学习可以使用一步lookahead计划来解决复杂的操纵任务的政策。我们表明,LDM既是样本效率更高又胜过其他模型体系结构。与计划结合使用时,我们可以在模拟中的几项具有挑战性的操纵任务上胜过其他基于模型和模型的政策。
translated by 谷歌翻译
物理模拟器在安全,不受约束的环境中方便学习加强学习政策表现出了巨大的希望。但是,由于现实差距,将获得的知识转移到现实世界可能会具有挑战性。为此,最近已经提出了几种方法来自动调整具有后验分布的实际数据,以在训练时与域随机化一起使用。这些方法已被证明在不同的设置和假设下适用于各种机器人任务。然而,现有文献缺乏对转移性能和实际数据效率的现有自适应域随机方法的详尽比较。在这项工作中,我们为离线和在线方法(Simopt,Bayrn,Droid,Dropo)提供了一个开放的基准,以阐明最适合每个设置和手头的任务。我们发现,在线方法受到下一次迭代的当前学会策略的质量受到限制,而离线方法有时可能会在使用开环命令中模拟中重播轨迹时失败。所使用的代码将在https://github.com/gabrieletiboni/adr-benchmark上发布。
translated by 谷歌翻译
对于现代自治系统来说,可靠的场景理解是必不可少的。当前基于学习的方法通常试图根据仅考虑分割质量的细分指标来最大化其性能。但是,对于系统在现实世界中的安全操作,考虑预测的不确定性也至关重要。在这项工作中,我们介绍了不确定性感知的全景分段的新任务,该任务旨在预测每个像素语义和实例分割,以及每个像素不确定性估计。我们定义了两个新颖的指标,以促进其定量分析,不确定性感知的综合质量(UPQ)和全景预期校准误差(PECE)。我们进一步提出了新型的自上而下的证据分割网络(EVPSNET),以解决此任务。我们的架构采用了一个简单而有效的概率融合模块,该模块利用了预测的不确定性。此外,我们提出了一种新的LOV \'ASZ证据损失函数,以优化使用深度证据学习概率的分割的IOU。此外,我们提供了几个强大的基线,将最新的泛型分割网络与无抽样的不确定性估计技术相结合。广泛的评估表明,我们的EVPSNET可以实现标准综合质量(PQ)的新最新技术,以及我们的不确定性倾斜度指标。
translated by 谷歌翻译
充分感知环境是机器人运动产生的关键因素。尽管引入深层视觉处理模型有助于扩展这种能力,但现有的方法缺乏积极修改感知内容的能力。人类在视觉认知过程中进行内部性能。本文通过提出一种新的机器人运动生成模型来解决问题,灵感来自人类的认知结构。该模型结合了一个由州驱动的主动自上而下的视觉注意模块,该模块获得了可以根据任务状态积极改变目标的注意事项。我们将这种注意力称为基于角色的注意力,因为获得的注意力集中在整个运动中共有连贯作用的目标。该模型经过了机器人工具使用任务的训练,在该任务中,基于角色的专注分别在对象拾取和对象拖动运动过程中将机器人抓手和工具视为相同的最终效果。这类似于一种称为工具体同化的生物学现象,其中一个人将处理工具视为身体的扩展。结果表明,模型的视觉感知的灵活性有所提高,即使为其提供了未经训练的工具或暴露于实验者的分心,也可以持续稳定的注意力和运动。
translated by 谷歌翻译
广义procrustes分析(GPA)是通过估计转换将多种形状带入共同参考的问题。 GPA已广泛研究了欧几里得和仿射转化。我们引入了具有可变形转换的GPA,这形成了一个更广泛和困难的问题。我们专门研究了称为线性基扭曲(LBW)的一类转换,该转换包含仿射转换和大多数常规变形模型,例如薄板样条(TPS)。具有变形的GPA是一个无凸的不受限制问题。我们使用两个形状约束来解决可变形GPA的基本歧义,这需要形状协方差的特征值。这些特征值可以独立计算为先验或后部。我们根据特征值分解给出了可变形GPA的封闭形式和最佳解决方案。该解决方案处理正则化,有利于平滑的变形场。它要求转换模型满足自由翻译的基本属性,该译本断言该模型可以实施任何翻译。我们表明,幸运的是,对于大多数常见的转换模型,包括仿射模型和TPS模型,这一属性是正确的。对于其他模型,我们为GPA提供了另一种封闭式解决方案,该解决方案与自由翻译模型的第一个解决方案完全吻合。我们提供用于计算解决方案的伪代码,导致提出的DEFPA方法,该方法快速,全球最佳且广泛适用。我们验证了我们的方法并将其与以前的六个不同2D和3D数据集的工作进行比较,并特别注意从交叉验证中选择超参数。
translated by 谷歌翻译
人类运动预测是了解社会环境,在机器人技术,监视等中直接应用的关键。我们提出了一个简单而有效的行人轨迹预测模型,该模型旨在旨在行人在以环境为条件的城市风格环境中进行预测:地图和环绕剂。我们的模型是一种基于神经的架构,可以以迭代顺序方式运行几层注意力块和变压器,从而捕获环境中的重要特征以改善预测。我们表明,如果不明确引入社交面具,动态模型,社交池层或复杂的图形结构,则可以使用SOTA模型在PAR结果上产生,这使我们的方法易于扩展和配置,取决于可用的数据。我们报告与SOTA模型相似的结果,该模型在具有单峰预测指标和FDE的公开可用和可扩展的数据集上。
translated by 谷歌翻译
本文解决了机器人的问题,可以协作将电缆带到指定的目标位置,同时避免实时碰撞。引入电缆(与刚性链接相反)使机器人团队能够通过电缆的松弛/拉特开关更改其内在尺寸,从而使机器人团队能够穿越狭窄的空间。但是,这是一个具有挑战性的问题,因为混合模式开关以及多个机器人和负载之间的动态耦合。以前解决此类问题的尝试是离线执行的,并且不考虑避免在线障碍。在本文中,我们介绍了一个级联的计划方案,并采用平行的集中式轨迹优化,涉及混合模式开关。我们还每个机器人开发了一组分散的计划者,这使我们可以解决在线协作负载操作问题的方法。我们开发并演示了第一个能够移动有线电视载荷的首个协作自治框架之一,该框架太重了,无法通过一个机器人移动,通过狭窄空间,具有实时反馈和实验中的反应性计划。
translated by 谷歌翻译
自动化车辆(AV)在很大程度上取决于强大的感知系统。评估视觉系统的当前方法主要关注逐帧性能。当在AV中使用时,这种评估方法似乎不足以评估感知子系统的性能。在本文中,我们提出了一种逻辑(称为时空感知逻辑(STPL)),该逻辑同时使用了空间和时间方式。STPL可以使用空间和时间关系来实现对感知数据的推理。STPL的一个主要优点是,即使在某些情况下没有地面真相数据,它也可以促进感知系统实时性能的基本理智检查。我们确定了STPL的片段,该片段是在多项式时间内有效地监视离线的。最后,我们提供了一系列针对AV感知系统的规格,以突出显示可以通过STPL通过离线监控来表达和分析的要求类型。
translated by 谷歌翻译
机器人舰队的商业和工业部署在处决期间通常会落在遥远的人类遥控者身上,当时机器人处于危险之中或无法取得任务进展。通过持续学习,随着时间的推移,从偏远人类的干预措施也可以用来改善机器人机队控制政策。一个核心问题是如何有效地将人类关注分配给单个机器人。先前的工作在单机器人的单人类设置中解决了这一点。我们正式化了交互式车队学习(IFL)设置,其中多个机器人可以交互查询并向多个人类主管学习。我们提出了一个完全实施的开源IFL基准套件,以评估IFL算法的GPU加速ISAAC健身环境。我们提出了Fleet-Dagger,这是一个IFL算法的家庭,并将一种新颖的Fleet Dagger算法与模拟中的4个基准进行了比较。我们还使用4个ABB Yumi机器人臂进行了1000个物理块式实验试验。实验表明,人类向机器人的分配显着影响机器人车队的性能,并且我们的算法比基线的算法获得了人类努力回报的8.8倍。有关代码,视频和补充材料,请参见https://tinyurl.com/fleet-dagger。
translated by 谷歌翻译
全渠道的人类授权移动操纵器是一个实验平台,用于测试自动和人为多动物移动操作的控制体系结构。全渠道由mecanum-wheel全向移动基础和系列弹性三角型平行操纵器组成,它是一类更广泛的移动协作机器人(“ mocobots”)的特定实现,灵活和明确的有效载荷。 Mocobot的关键特征包括被动依从性,为人类的安全和有效载荷的安全性以及高保真的最终效应力控制,而与移动基础的潜在不精确运动无关。我们描述了Mocobots团队设计的一般考虑;根据这些考虑因素的设计;操纵器和移动基础控制器,以实现有用的多机器人协作行为;以及对大型,笨拙的有效载荷的人类多机协作移动操作进行的最初实验。对于这些实验,通过有效载荷,人类和全网络之间的唯一沟通是机械的。
translated by 谷歌翻译