变异量子算法(VQAS)为通过嘈杂的中间规模量子(NISQ)处理器获得量子优势提供了最有希望的途径。这样的系统利用经典优化来调整参数化量子电路(PQC)的参数。目标是最大程度地减少取决于从PQC获得的测量输出的成本函数。通常通过随机梯度下降(SGD)实现优化。在NISQ计算机上,由于缺陷和破坏性而引起的栅极噪声通过引入偏差会影响随机梯度的估计。量子误差缓解(QEM)技术可以减少估计偏差而无需量子数量增加,但它们又导致梯度估计的方差增加。这项工作研究了量子门噪声对SGD收敛的影响,而VQA的基本实例是变异的eigensolver(VQE)。主要目标是确定QEM可以增强VQE的SGD性能的条件。结果表明,量子门噪声在SGD的收敛误差(根据参考无噪声PQC评估)诱导非零误差 - 基础,这取决于噪声门的数量,噪声的强度以及可观察到的可观察到的特征性被测量和最小化。相反,使用QEM,可以获得任何任意小的误差。此外,对于有或没有QEM的误差级别,QEM可以减少所需的迭代次数,但是只要量子噪声水平足够小,并且在每种SGD迭代中允许足够大的测量值。最大切割问题的数值示例证实了主要理论发现。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
变形量子算法(VQAS)可以是噪声中间级量子(NISQ)计算机上的量子优势的路径。自然问题是NISQ设备的噪声是否对VQA性能的基本限制。我们严格证明对嘈杂的VQAS进行严重限制,因为噪音导致训练景观具有贫瘠高原(即消失梯度)。具体而言,对于考虑的本地Pauli噪声,我们证明梯度在Qubits $ N $的数量中呈指数呈指数增长,如果Ansatz的深度以$ N $线性增长。这些噪声诱导的贫瘠强韧(NIBPS)在概念上不同于无辐射贫瘠强度,其与随机参数初始化相关联。我们的结果是为通用Ansatz制定的,该通用ansatz包括量子交替运算符ANSATZ和酉耦合簇Ansatz等特殊情况。对于前者来说,我们的数值启发式展示了用于现实硬件噪声模型的NIBP现象。
translated by 谷歌翻译
Quantum-enhanced data science, also known as quantum machine learning (QML), is of growing interest as an application of near-term quantum computers. Variational QML algorithms have the potential to solve practical problems on real hardware, particularly when involving quantum data. However, training these algorithms can be challenging and calls for tailored optimization procedures. Specifically, QML applications can require a large shot-count overhead due to the large datasets involved. In this work, we advocate for simultaneous random sampling over both the dataset as well as the measurement operators that define the loss function. We consider a highly general loss function that encompasses many QML applications, and we show how to construct an unbiased estimator of its gradient. This allows us to propose a shot-frugal gradient descent optimizer called Refoqus (REsource Frugal Optimizer for QUantum Stochastic gradient descent). Our numerics indicate that Refoqus can save several orders of magnitude in shot cost, even relative to optimizers that sample over measurement operators alone.
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
量子机学习(QML)中的内核方法最近引起了人们的重大关注,作为在数据分析中获得量子优势的潜在候选者。在其他有吸引力的属性中,当训练基于内核的模型时,可以保证由于训练格局的凸度而找到最佳模型的参数。但是,这是基于以下假设:量子内核可以从量子硬件有效获得。在这项工作中,我们从准确估计内核值所需的资源的角度研究了量子内核的训练性。我们表明,在某些条件下,可以将量子内核在不同输入数据上的值呈指数浓缩(在量子数中)指向一些固定值,从而导致成功训练所需的测量数量的指数缩放。我们确定了可以导致集中度的四个来源,包括:数据嵌入,全球测量,纠缠和噪声的表达性。对于每个来源,分析得出量子内核的相关浓度结合。最后,我们表明,在处理经典数据时,训练用内核比对方法嵌入的参数化数据也容易受到指数浓度的影响。我们的结果通过数值仿真来验证几个QML任务。总体而言,我们提供指南,表明应避免某些功能,以确保量子内核方法的有效评估和训练性。
translated by 谷歌翻译
参数化量子电路的优化对于具有变分量子算法(VQAS)的计算任务的应用是必不可少的。然而,VQA的现有优化算法需要过多的量子测量镜头,以估计可观察到的期望值或迭代电路参数的更新,其成本是实际使用的重要障碍。为了解决这个问题,我们开发了一个有效的框架,\ yexit {随机梯度线贝叶斯优化}(SGLBO),用于电路优化,测量镜头较少。通过估计基于随机梯度下降(SGD)更新参数的适当方向,并且进一步利用贝叶斯优化(BO)来估计SGD的每次迭代中的最佳步长,降低测量镜头的成本。我们制定了一个自适应测量射击策略,可在不依赖于精确的期望值估计和许多迭代的情况下可行地实现优化;此外,我们表明,后缀平均技术可以显着降低统计和硬件噪声在VQA的优化中的效果。我们的数值模拟表明,使用这些技术增强的SGLBO可以大大减少所需的测量射击数量,提高优化的准确性,并与VQAS的代表性任务中的其他最先进的优化器相比,增强了噪音的鲁棒性。这些结果建立了一系列量子电路优化器的框架,整合了两种不同的优化方法,SGD和BO,以显着降低测量镜头的成本。
translated by 谷歌翻译
量子Gibbs状态的制备是量子计算的重要组成部分,在各种区域具有广泛的应用,包括量子仿真,量子优化和量子机器学习。在本文中,我们提出了用于量子吉布斯状态准备的变分杂化量子典型算法。我们首先利用截短的泰勒系列来评估自由能,并选择截短的自由能量作为损耗功能。然后,我们的协议训练参数化量子电路以学习所需的量子吉布斯状态。值得注意的是,该算法可以在配备有参数化量子电路的近期量子计算机上实现。通过执行数值实验,我们显示浅参数化电路,只有一个额外的量子位训练,以便准备诸如高于95%的保真度的insing链和旋转链Gibbs状态。特别地,对于ising链模型,我们发现,只有一个参数和一个额外的qubit的简化电路ansatz可以训练,以在大于2的逆温度下实现吉布斯状态准备中的99%保真度。
translated by 谷歌翻译
变分量子本层(VQE)是一种领先的策略,可利用嘈杂的中间量子量子(NISQ)机器来解决化学问题的表现优于经典方法。为了获得大规模问题的计算优势,可行的解决方案是量子分布式优化(QUDIO)方案,该方案将原始问题分配到$ K $子问题中,并将其分配给$ K $量子机器,然后将其分配给并行优化。尽管有可证明的加速度比率,但Qudio的效率可能会因同步操作而大大降低。为了征服这个问题,我们在这里提议在量子分布式优化期间,将洗牌措施涉及到当地的汉密尔顿人。与Qudio相比,Shuffle-Qudio显着降低了量子处理器之间的通信频率,并同时达到了更好的训练性。特别是,我们证明,Shuffle-Qudio可以比Qudio更快地收敛速率。进行了广泛的数值实验,以验证估计分子的基态能量的任务中,隔离式时间速度允许壁式时间速度和低近似误差。我们从经验上证明,我们的建议可以与其他加速技术(例如操作员分组)无缝集成,以进一步提高VQE的疗效。
translated by 谷歌翻译
在纠缠和连贯性等计量学中利用量子效应使人们可以测量具有增强灵敏度的参数。但是,时间依赖性的噪声会破坏这种海森堡限制的扩增。我们提出了一种基于量子信号处理框架,以克服这些现实的噪声诱导的实践量子计量学限制。我们的算法将门参数$ \ varphi $〜(单量Z阶段)分开,该算法易受时间依赖性错误与目标门参数$ \ theta $〜(| 10>和| 01> state之间的交换 - 角)易受时间依赖时间的错误。这在很大程度上没有时间依赖性误差。我们的方法实现了$ 10^{ - 4} $径向的准确性,用于学习超导级实验的$ \ theta $,以优于两个数量级的现有替代方案。我们还通过快速的傅立叶变换和顺序相位差异证明了学习时间依赖性栅极参数的鲁棒性。我们从理论和数字上均显示出最佳计量方差缩放的有趣过渡,这是电路深度$ d $的函数,从预抗态度制度$ d \ ll 1/\ theta $ to to Heisenberg限制$ d \ to \ to \ $ $。值得注意的是,在临时策略中,我们的方法对时间敏感参数$ \ varphi $比例的估计差异比渐近的海森伯格限制快速限制为深度的函数,$ \ text {var}(\ hat {\ varphi})\ aid 1/d^4 $。我们的工作是第一个证明在实验室量子计算机中实用应用的量子信号处理算法。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
Hamiltonian学习是量子系统识别,校准和量子计算机成功运行的重要程序。通过对量子系统的查询,该过程寻求获得给定Hamiltonian模型的参数和噪声源的描述。汉密尔顿学习的标准技术需要仔细设计查询和$ O(\ epsilon ^ {-2})$查询,以获得由于标准量子限制而实现学习错误$ \ epsilon $。通过实现学习错误$ \ epsilon $ \ opsilon $的有效和准确地估计Hamiltonian参数,我们介绍了一个活跃的学习者,它给出了一个初始的训练示例和交互式查询量子系统以产生新的培训数据的能力。我们正式指定和实验地评估该汉密尔顿主动学习(HAL)算法的性能,用于学习四个不同超导IBM量子器件上的双态交叉谐振Hamiltonian的六个参数。与同一问题的标准技术和指定的学习错误相比,HAL可以在相当的非自适应学习算法上实现高达99.8 \%$ 99.1 \%$ 49.1%。此外,通过访问汉密尔顿参数的子集的先前信息,并提供了在学习期间用线性(或指数)的较长系统交互时间选择查询的能力,Hal可以超过标准量子限制,实现Heisenberg(或超级Heisenberg)有限公司学习期间的收敛速度。
translated by 谷歌翻译
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years. However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number. This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks. In this work, we propose an initialization strategy with theoretical guarantees for the vanishing gradient problem in general deep quantum circuits. Specifically, we prove that under proper Gaussian initialized parameters, the norm of the gradient decays at most polynomially when the qubit number and the circuit depth increase. Our theoretical results hold for both the local and the global observable cases, where the latter was believed to have vanishing gradients even for very shallow circuits. Experimental results verify our theoretical findings in the quantum simulation and quantum chemistry.
translated by 谷歌翻译
已广泛研究了确定量子状态(例如保真度度量)相似性的有效度量。在本文中,我们解决了可以定义可以\ textit {有效估计}的量子操作的相似性度量的问题。给定了两个量子操作,$ u_1 $和$ u_2 $,以其电路表格表示,我们首先开发一个量子采样电路,以估算其差异的归一化schatten 2-norm($ \ | | | | | | U_1-U_2 \ | _ {s_2} $)使用精确$ \ epsilon $,仅使用一个干净的量子和一个经典的随机变量。我们证明了一个poly $(\ frac {1} {\ epsilon})$ umper bound在样品复杂性上,该界限与量子系统的大小无关。然后,我们证明这种相似性度量与使用量子状态的常规保真度度量($ f $)直接相关。 u_1-u_2 \ | _ {s_2} $足够小(例如$ \ leq \ frac {\ epsilon} {1+ \ sqrt {2(1/\ delta -1)} $)处理相同的随机和均匀选择的纯状态,$ | \ psi \ rangle $,如有需要($ f({{u} _1 | \ psi \ rangle,{u} _2 | \ psi \ wangle)\ geq 1 - \ epsilon $),概率超过$ 1- \ delta $。我们为量子电路学习任务提供了这种有效的相似性度量估计框架的示例应用,例如找到给定统一操作的平方根。
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
优化参数化量子电路(PQC)是使用近期量子计算机的领先方法。但是,对于PQC的成本函数景观知之甚少,这阻碍了量子意识到的优化器的进展。在这项工作中,我们研究了PQCS已观察到的三种不同景观特征之间的联系:(1)指数呈指数消失的梯度(称为贫瘠的高原),(2)关于平均值的成本成本集中,以及(3)(3)指数的狭窄小小的(称为狭窄的峡谷)。我们在分析上证明,这三个现象一起出现,即当发生一个现象时,其他两个现象也是如此。该结果的一个关键含义是,可以通过成本差而不是通过计算更昂贵的梯度来数字诊断贫瘠的高原。更广泛地说,我们的工作表明,量子力学排除了某些成本景观(否则在数学上可能是可能的),因此从量子基础的角度来看,我们的结果很有趣。
translated by 谷歌翻译
量子力学的内在概率性质引起了设计量子生成学习模型(QGLM)的努力。尽管取得了经验成就,但QGLMS的基础和潜在优势仍然在很大程度上晦涩难懂。为了缩小这一知识差距,我们在这里探索QGLM的概括属性,即将模型从学习的数据扩展到未知数据的能力。我们考虑两个典型的QGLM,量子电路出生的机器和量子生成的对抗网络,并明确地给出了它们的概括界限。当量子设备可以直接访问目标分布并采用量子内核时,结果确定了QGLM的优势而不是经典方法。我们进一步采用这些泛化范围来在量子状态制备和哈密顿学习中具有潜在的优势。 QGLM在加载高斯分布和估计参数化的哈密顿量的基态方面的数值结果符合理论分析。我们的工作开辟了途径,以定量了解量子生成学习模型的力量。
translated by 谷歌翻译
A key component of a quantum machine learning model operating on classical inputs is the design of an embedding circuit mapping inputs to a quantum state. This paper studies a transfer learning setting in which classical-to-quantum embedding is carried out by an arbitrary parametric quantum circuit that is pre-trained based on data from a source task. At run time, a binary quantum classifier of the embedding is optimized based on data from the target task of interest. The average excess risk, i.e., the optimality gap, of the resulting classifier depends on how (dis)similar the source and target tasks are. We introduce a new measure of (dis)similarity between the binary quantum classification tasks via the trace distances. An upper bound on the optimality gap is derived in terms of the proposed task (dis)similarity measure, two R$\'e$nyi mutual information terms between classical input and quantum embedding under source and target tasks, as well as a measure of complexity of the combined space of quantum embeddings and classifiers under the source task. The theoretical results are validated on a simple binary classification example.
translated by 谷歌翻译