生成建模是近期量子设备的一项有前途的任务,可以将量子测量的随机性作为随机来源。所谓的出生机器是纯粹的量子模型,并承诺以量子的方式生成概率分布,而对经典计算机无法访问。本文介绍了出生的机器在蒙特卡洛模拟中的应用,并将其覆盖范围扩展到多元和有条件的分布。模型在(嘈杂)模拟器和IBM量子超导量子硬件上运行。更具体地说,出生的机器用于生成由Muons和探测器材料之间的散射过程和高能量物理颜料实验中的探测器材料产生的事件。 MFC是出现在标准模型理论框架中的玻色子,它们是暗物质的候选者。经验证据表明,诞生的机器可以从蒙特卡洛模拟中重现数据集的边际分布和相关性。
translated by 谷歌翻译
我们在蒙特卡洛事件生成的生成对抗学习的背景下提出和评估一种替代量子发生器体系结构,用于模拟大型强子碰撞器(LHC)的粒子物理过程。我们通过在已知基础分布生成的人造数据上实施量子网络来验证这种方法。然后将网络应用于特定LHC散射过程的蒙特卡洛生成的数据集。新的量子生成器体系结构导致对最先进的实现的概括,即使使用浅深度网络,也可以达到较小的Kullback-Leibler分歧。此外,即使经过小型培训样本组进行了训练,量子发生器即使训练了培训,也成功地学习了基础分布功能。这对于数据增强应用程序特别有趣。我们将这种新颖的方法部署在两个不同的量子硬件体系结构,即被困的离子和超导技术上,以测试其无关紧要的可行性。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. Such an evaluation is difficult owing to the availability and price of physical quantum processing units. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware cloud computing service can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware provides the ability to execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, of the four quantum devices tested, only IonQ's Harmony achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.
translated by 谷歌翻译
隔离量子系统的演变是线性的,因此量子算法是可逆的,包括那些利用量子电路作为生成机器学习模型的量子。但是,一些最成功的经典生成模型,例如基于神经网络的模型,涉及高度非线性,因此是非可逆的动力学。在本文中,我们通过引入一个模型来探讨这些动力学在量子生成建模中的效果,该模型通过神经网络结构将非线性激活添加到标准生产的机器框架上 - 量子神经元出生机器(QNBM)。为了实现这一目标,我们利用了先前引入的量子神经元子例程,这是一个重复启用的电路,具有中路测量和经典控制。引入QNBM后,我们通过训练具有4个输出神经元以及各种输入和隐藏层大小的3层QNBM来研究其性能如何取决于网络大小。然后,我们将非线性QNBM与线性量子电路诞生的机器(QCBM)进行比较。我们将相似的时间和内存资源分配给每个模型,因此唯一的主要区别是QNBM所需的QUBIT开销。通过基于梯度的训练,我们表明,尽管这两种模型都可以轻松地学习一个琐碎的均匀概率分布,但在更具挑战性的分布类别上,QNBM的错误率几乎比具有相似数量可调参数的QCBM要小3倍。因此,我们提供的证据表明,非线性是量子生成模型中的有用资源,我们将QNBM作为具有良好生成性能和量子优势潜力的新模型。
translated by 谷歌翻译
我们设计和分析了量子变压器,扩展了最先进的经典变压器神经网络体系结构,已知在自然语言处理和图像分析中表现出色。在先前用于数据加载和正交神经层的参数化量子电路的工作的基础上,我们引入了三种量子注意机制,包括基于复合矩阵的量子变压器。这些量子体系结构可以使用浅量子电路构建,并可以提供定性不同的分类模型。与最佳的经典变压器和其他经典基准相比,我们对标准医疗图像数据集进行了量子变压器的广泛模拟,这些量子变压器表现出竞争力,有时表现更好。与经典算法相对于分类图像的大小,我们的量子注意层的计算复杂性被证明是有利的。与拥有数百万参数的最佳经典方法相比,我们的量子体系结构具有数千个参数。最后,我们在超导量子计算机上实施了量子变压器,并获得了多达六个量子实验的令人鼓舞的结果。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
量子噪声是嘈杂中间级量子(NISQ)计算机中的关键挑战。以前的缓解噪声的工作主要集中在门级或脉冲级噪声自适应编译。然而,有限的研究工作通过使量子电路本身对噪声具有更高的优化级别。我们提出了Quoutumnas,是变分电路和量子位映射的噪声自适应共同搜索的全面框架。变形量子电路是构建QML和量子仿真的有希望的方法。然而,由于大型设计空间和参数训练成本,找到最佳变分电路及其最佳参数是具有挑战性的。我们建议通过引入新的超级速度来解耦电路搜索和参数培训。超电路由多层预定的参数化栅极构成,并通过迭代采样和更新其的参数子集(Subcircuit)训练。它提供了从头开始培训的子通差形性能的准确估计。然后我们执行Subcircuit的演进共同搜索和其量子位映射。使用从超级电路继承的参数和使用真实设备噪声模型进行估计,估计子电路性能。最后,我们执行迭代栅极修剪和FineTuning以去除冗余栅极。在10个量子计算上广泛评估了12个QML和VQE基准,Quoutumnas显着优于基线。对于QML,Quoutumnas是第一个展示超过95%的2级,85%的4级和真实QC的32%的10级分类准确性。与UCCSD相比,它还实现了H2,H2O,LIH,CH4,BEH2上的VQE任务的最低特征值。我们还开源Quantumengine(https://github.com/mit-han-lab/pytorch-quantum),用于快速训练参数化量子电路,以促进未来的研究。
translated by 谷歌翻译
在最近针对生成任务的量子电路模型的建议中,关于其性能的讨论仅限于它们重现已知目标分布的能力。例如,诸如量子电路诞生的机器(QCBM)之类的表达模型家族几乎已经完全评估了其以高精度学习给定目标分布的能力。尽管此方面可能是某些任务的理想选择,但它将生成模型的评估范围限制在记忆数据而不是概括的能力上。结果,对模型的概括性能以及此类能力和资源需求之间的关系几乎没有理解,例如电路深度和培训数据的量。在这项工作中,我们利用最近提出的概括评估框架开始解决这一知识差距。我们首先研究了QCBM的基数受限分布的学习过程,并在增加电路深度的同时看到概括性能的提高。在此处介绍的12个问题示例中,我们观察到,只有30%的有效模式与训练集相比,QCBM表现出最佳的概括性能,以产生看不见和有效的模式。最后,我们评估了QCBM不仅可以概括有效特征的能力,而且还评估了根据充分偏见分布分布的高质量斑点。我们看到,QCBM能够有效地学习偏见并产生比培训集中的质量更高的看不见的样本。据我们所知,这是文献中的第一部作品,该作品将QCBM的概括性能作为量子生成模型的积分评估度量标准,并证明了QCBM将其推广到高质量的,所需的新型样品的能力。
translated by 谷歌翻译
在这项工作中,我们提供了一个量子Hopfield关联内存(QHAM),并使用IBM量子体验展示其在仿真和硬件中的能力。 QHAM基于量子神经元设计,可以用于许多不同的机器学习应用,并且可以在真实量子硬件上实现,而不需要中间电路测量或重置操作。我们通过使用硬件噪声模型以及15 QUBIT IBMQ_16_MELBOURBORNE设备的模拟来分析神经元和全QHAM的准确性。量子神经元和QHAM被证明是有弹性的噪声,并且需要低Qubit开销和栅极复杂性。我们通过测试其有效的内存容量来基准QHAM,并在Quantum硬件的NISQ-ERA中展示其能力。该演示在NISQ-ERA量子硬件中实现的第一功能QHAM是在量子计算前沿的机器学习的重要步骤。
translated by 谷歌翻译
Quantum machine learning has become an area of growing interest but has certain theoretical and hardware-specific limitations. Notably, the problem of vanishing gradients, or barren plateaus, renders the training impossible for circuits with high qubit counts, imposing a limit on the number of qubits that data scientists can use for solving problems. Independently, angle-embedded supervised quantum neural networks were shown to produce truncated Fourier series with a degree directly dependent on two factors: the depth of the encoding, and the number of parallel qubits the encoding is applied to. The degree of the Fourier series limits the model expressivity. This work introduces two new architectures whose Fourier degrees grow exponentially: the sequential and parallel exponential quantum machine learning architectures. This is done by efficiently using the available Hilbert space when encoding, increasing the expressivity of the quantum encoding. Therefore, the exponential growth allows staying at the low-qubit limit to create highly expressive circuits avoiding barren plateaus. Practically, parallel exponential architecture was shown to outperform the existing linear architectures by reducing their final mean square error value by up to 44.7% in a one-dimensional test problem. Furthermore, the feasibility of this technique was also shown on a trapped ion quantum processing unit.
translated by 谷歌翻译
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
在这项工作中,我们利用量子深的增强学习作为方法,以在三个模拟的复杂性的模拟环境中为简单的,轮式机器人学习导航任务。我们显示了与经典基线相比,在混合量子古典设置中训练有良好建立的深钢筋学习技术的参数化量子电路的相似性能。据我们所知,这是用于机器人行为的量子机学习(QML)的首次演示。因此,我们将机器人技术建立为QML算法的可行研究领域,此后量子计算和量子机学习是自治机器人技术未来进步的潜在技术。除此之外,我们讨论了当前的方法的限制以及自动机器人量子机学习领域的未来研究方向。
translated by 谷歌翻译
对机器学习模型训练的栅极基量子电路的发展越来越兴趣。然而,关于电路设计的参数,噪声和其他测量误差对量子机器学习模型性能的影响很少。在本文中,我们探讨了使用多个标准机器学习数据集和IBM的Qiskit模拟器的关键电路设计参数(Qubits,Deposit等)的实际意义。总的来,我们评估超过6500个独特电路,以$ n \约120700美元。我们发现,一般浅(低深度)宽(更多Qubits)电路拓扑倾向于在没有噪声的情况下更优于更深的内容。我们还探讨了不同噪声概念的影响和影响,并讨论了对分类机学习任务的噪声更多/较低的电路拓扑。基于该研究结果,我们定义了使用基于门的NISQ量子计算机来实现近期承诺的电路拓扑指南。
translated by 谷歌翻译
自我监督学习的复苏,其中深入学习模型从数据中产生自己的监督信号,承诺可扩展的方式来解决没有人为注释的大量越来越大的现实数据集。然而,这些方法的惊人的计算复杂性使得对于最先进的性能,经典硬件要求表示有关进一步进展的重要瓶颈。在这里,我们采取了了解量子神经网络是否能够满足对更强大的架构的需求并在原则上的原则上测试其有效性的步骤。有趣的是,即使当量子电路被采样,使用等效结构化的经典网络,我们将遵守使用小型量子神经网络的视觉表示的学习的数值优势。此外,我们应用我们的最佳量子模型,以对IBMQ \ _Paris量子计算机进行分类,并发现当前嘈杂的设备可以在下游任务上实现对等效经典模型的平等准确性。
translated by 谷歌翻译