隔离量子系统的演变是线性的,因此量子算法是可逆的,包括那些利用量子电路作为生成机器学习模型的量子。但是,一些最成功的经典生成模型,例如基于神经网络的模型,涉及高度非线性,因此是非可逆的动力学。在本文中,我们通过引入一个模型来探讨这些动力学在量子生成建模中的效果,该模型通过神经网络结构将非线性激活添加到标准生产的机器框架上 - 量子神经元出生机器(QNBM)。为了实现这一目标,我们利用了先前引入的量子神经元子例程,这是一个重复启用的电路,具有中路测量和经典控制。引入QNBM后,我们通过训练具有4个输出神经元以及各种输入和隐藏层大小的3层QNBM来研究其性能如何取决于网络大小。然后,我们将非线性QNBM与线性量子电路诞生的机器(QCBM)进行比较。我们将相似的时间和内存资源分配给每个模型,因此唯一的主要区别是QNBM所需的QUBIT开销。通过基于梯度的训练,我们表明,尽管这两种模型都可以轻松地学习一个琐碎的均匀概率分布,但在更具挑战性的分布类别上,QNBM的错误率几乎比具有相似数量可调参数的QCBM要小3倍。因此,我们提供的证据表明,非线性是量子生成模型中的有用资源,我们将QNBM作为具有良好生成性能和量子优势潜力的新模型。
translated by 谷歌翻译
在最近针对生成任务的量子电路模型的建议中,关于其性能的讨论仅限于它们重现已知目标分布的能力。例如,诸如量子电路诞生的机器(QCBM)之类的表达模型家族几乎已经完全评估了其以高精度学习给定目标分布的能力。尽管此方面可能是某些任务的理想选择,但它将生成模型的评估范围限制在记忆数据而不是概括的能力上。结果,对模型的概括性能以及此类能力和资源需求之间的关系几乎没有理解,例如电路深度和培训数据的量。在这项工作中,我们利用最近提出的概括评估框架开始解决这一知识差距。我们首先研究了QCBM的基数受限分布的学习过程,并在增加电路深度的同时看到概括性能的提高。在此处介绍的12个问题示例中,我们观察到,只有30%的有效模式与训练集相比,QCBM表现出最佳的概括性能,以产生看不见和有效的模式。最后,我们评估了QCBM不仅可以概括有效特征的能力,而且还评估了根据充分偏见分布分布的高质量斑点。我们看到,QCBM能够有效地学习偏见并产生比培训集中的质量更高的看不见的样本。据我们所知,这是文献中的第一部作品,该作品将QCBM的概括性能作为量子生成模型的积分评估度量标准,并证明了QCBM将其推广到高质量的,所需的新型样品的能力。
translated by 谷歌翻译
在这项工作中,我们提供了一个量子Hopfield关联内存(QHAM),并使用IBM量子体验展示其在仿真和硬件中的能力。 QHAM基于量子神经元设计,可以用于许多不同的机器学习应用,并且可以在真实量子硬件上实现,而不需要中间电路测量或重置操作。我们通过使用硬件噪声模型以及15 QUBIT IBMQ_16_MELBOURBORNE设备的模拟来分析神经元和全QHAM的准确性。量子神经元和QHAM被证明是有弹性的噪声,并且需要低Qubit开销和栅极复杂性。我们通过测试其有效的内存容量来基准QHAM,并在Quantum硬件的NISQ-ERA中展示其能力。该演示在NISQ-ERA量子硬件中实现的第一功能QHAM是在量子计算前沿的机器学习的重要步骤。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
生成建模是近期量子设备的一项有前途的任务,可以将量子测量的随机性作为随机来源。所谓的出生机器是纯粹的量子模型,并承诺以量子的方式生成概率分布,而对经典计算机无法访问。本文介绍了出生的机器在蒙特卡洛模拟中的应用,并将其覆盖范围扩展到多元和有条件的分布。模型在(嘈杂)模拟器和IBM量子超导量子硬件上运行。更具体地说,出生的机器用于生成由Muons和探测器材料之间的散射过程和高能量物理颜料实验中的探测器材料产生的事件。 MFC是出现在标准模型理论框架中的玻色子,它们是暗物质的候选者。经验证据表明,诞生的机器可以从蒙特卡洛模拟中重现数据集的边际分布和相关性。
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
Quantum machine learning (QML) has received increasing attention due to its potential to outperform classical machine learning methods in various problems. A subclass of QML methods is quantum generative adversarial networks (QGANs) which have been studied as a quantum counterpart of classical GANs widely used in image manipulation and generation tasks. The existing work on QGANs is still limited to small-scale proof-of-concept examples based on images with significant down-scaling. Here we integrate classical and quantum techniques to propose a new hybrid quantum-classical GAN framework. We demonstrate its superior learning capabilities by generating $28 \times 28$ pixels grey-scale images without dimensionality reduction or classical pre/post-processing on multiple classes of the standard MNIST and Fashion MNIST datasets, which achieves comparable results to classical frameworks with 3 orders of magnitude less trainable generator parameters. To gain further insight into the working of our hybrid approach, we systematically explore the impact of its parameter space by varying the number of qubits, the size of image patches, the number of layers in the generator, the shape of the patches and the choice of prior distribution. Our results show that increasing the quantum generator size generally improves the learning capability of the network. The developed framework provides a foundation for future design of QGANs with optimal parameter set tailored for complex image generation tasks.
translated by 谷歌翻译
预计人工神经网络的领域将强烈受益于量子计算机的最新发展。特别是Quantum Machine Learning,一类利用用于创建可训练神经网络的Qubits的量子算法,将提供更多的力量来解决模式识别,聚类和机器学习等问题。前馈神经网络的构建块由连接到输出神经元的一层神经元组成,该输出神经元根据任意激活函数被激活。相应的学习算法以Rosenblatt Perceptron的名义。具有特定激活功能的量子感知是已知的,但仍然缺乏在量子计算机上实现任意激活功能的一般方法。在这里,我们用量子算法填充这个间隙,该算法能够将任何分析激活功能近似于其功率系列的任何给定顺序。与以前的提案不同,提供不可逆转的测量和简化的激活功能,我们展示了如何将任何分析功能近似于任何所需的准确性,而无需测量编码信息的状态。由于这种结构的一般性,任何前锋神经网络都可以根据Hornik定理获取通用近似性质。我们的结果重新纳入栅极型量子计算机体系结构中的人工神经网络科学。
translated by 谷歌翻译
近年来,机器学习的巨大进步已经开始对许多科学和技术的许多领域产生重大影响。在本文的文章中,我们探讨了量子技术如何从这项革命中受益。我们在说明性示例中展示了过去几年的科学家如何开始使用机器学习和更广泛的人工智能方法来分析量子测量,估计量子设备的参数,发现新的量子实验设置,协议和反馈策略,以及反馈策略,以及通常改善量子计算,量子通信和量子模拟的各个方面。我们重点介绍了公开挑战和未来的可能性,并在未来十年的一些投机愿景下得出结论。
translated by 谷歌翻译
随着实际量子计算机中的量子位数(QUBits)的数量恒定增加,实现和加速量子计算机上的普遍深入学习正在成为可能。随着这种趋势,基于量子神经元的不同设计出现了量子神经结构。 Quantum深度学习中的一个基本问题出现:什么是最好的量子神经结构?灵感来自古典计算的神经结构设计,该古典计算通常采用多种类型的神经元,本文首次尝试混合量子神经元设计来构建量子神经结构。我们观察到现有的量子神经元设计可能是完全不同但互补的,例如来自变分量子电路(VQC)和量子流的神经元。更具体地说,VQC可以应用真实值的权重,但遭受扩展到多个层,而量子流可以有效地构建多层网络,但仅限于使用二进制权重。要采取各自的优势,我们建议将它们混合在一起并弄清楚无缝连接的方法,而无需额外的昂贵测量。我们进一步研究了混合量子神经元的设计原理,这可以为未来提供量子神经结构勘探的指导。实验结果表明,具有混合量子神经元的鉴定的量子神经结构可以在MNIST数据集中达到90.62%的准确性,而VQC和量子流量分别比为52.77%和69.92%。
translated by 谷歌翻译
Quantum machine learning has become an area of growing interest but has certain theoretical and hardware-specific limitations. Notably, the problem of vanishing gradients, or barren plateaus, renders the training impossible for circuits with high qubit counts, imposing a limit on the number of qubits that data scientists can use for solving problems. Independently, angle-embedded supervised quantum neural networks were shown to produce truncated Fourier series with a degree directly dependent on two factors: the depth of the encoding, and the number of parallel qubits the encoding is applied to. The degree of the Fourier series limits the model expressivity. This work introduces two new architectures whose Fourier degrees grow exponentially: the sequential and parallel exponential quantum machine learning architectures. This is done by efficiently using the available Hilbert space when encoding, increasing the expressivity of the quantum encoding. Therefore, the exponential growth allows staying at the low-qubit limit to create highly expressive circuits avoiding barren plateaus. Practically, parallel exponential architecture was shown to outperform the existing linear architectures by reducing their final mean square error value by up to 44.7% in a one-dimensional test problem. Furthermore, the feasibility of this technique was also shown on a trapped ion quantum processing unit.
translated by 谷歌翻译
One of the challenges currently facing the quantum computing community is the design of quantum circuits which can efficiently run on near-term quantum computers, known as the quantum compiling problem. Algorithms such as the Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm (QAOA), and Quantum Architecture Search (QAS) have been shown to generate or find optimal near-term quantum circuits. However, these methods are computationally expensive and yield little insight into the circuit design process. In this paper, we propose Quantum Deep Dreaming (QDD), an algorithm that generates optimal quantum circuit architectures for specified objectives, such as ground state preparation, while providing insight into the circuit design process. In QDD, we first train a neural network to predict some property of a quantum circuit (such as VQE energy). Then, we employ the Deep Dreaming technique on the trained network to iteratively update an initial circuit to achieve a target property value (such as ground state VQE energy). Importantly, this iterative updating allows us to analyze the intermediate circuits of the dreaming process and gain insights into the circuit features that the network is modifying during dreaming. We demonstrate that QDD successfully generates, or 'dreams', circuits of six qubits close to ground state energy (Transverse Field Ising Model VQE energy) and that dreaming analysis yields circuit design insights. QDD is designed to optimize circuits with any target property and can be applied to circuit design problems both within and outside of quantum chemistry. Hence, QDD lays the foundation for the future discovery of optimized quantum circuits and for increased interpretability of automated quantum algorithm design.
translated by 谷歌翻译
Quantum Machine Learning(QML)提供了一种强大的灵活的范式,可用于编程近期量子计算机,具有化学,计量,材料科学,数据科学和数学的应用。这里,一个以参数化量子电路的形式训练ANSATZ,以实现感兴趣的任务。然而,最近出现了挑战表明,由于随机性或硬件噪声引起的平坦训练景观,因此难以训练深度尖锐钽。这激励了我们的工作,在那里我们提出了一种可变的结构方法来构建QML的Ansatzes。我们的方法称为VANS(可变ANSATZ),将一组规则应用于在优化期间以知识的方式在增长和(至关重要的)中删除量子门。因此,VANS非常适合通过保持ANSATZ浅扫描来缓解训练性和与噪声相关的问题。我们在变分量子Eigensolver中使用Vans进行冷凝物质和量子化学应用,并且还在量子自身化学器中进行数据压缩,显示所有情况的成功结果。
translated by 谷歌翻译
对机器学习模型训练的栅极基量子电路的发展越来越兴趣。然而,关于电路设计的参数,噪声和其他测量误差对量子机器学习模型性能的影响很少。在本文中,我们探讨了使用多个标准机器学习数据集和IBM的Qiskit模拟器的关键电路设计参数(Qubits,Deposit等)的实际意义。总的来,我们评估超过6500个独特电路,以$ n \约120700美元。我们发现,一般浅(低深度)宽(更多Qubits)电路拓扑倾向于在没有噪声的情况下更优于更深的内容。我们还探讨了不同噪声概念的影响和影响,并讨论了对分类机学习任务的噪声更多/较低的电路拓扑。基于该研究结果,我们定义了使用基于门的NISQ量子计算机来实现近期承诺的电路拓扑指南。
translated by 谷歌翻译
高品质,大型数据集在古典机器学习的发展和成功中发挥了至关重要的作用。量子机器学习(QML)是一个新的领域,旨在使用量子计算机进行数据分析,希望获得某种量子的量子优势。虽然大多数提议的QML架构是使用经典数据集的基准测试,但仍存在古典数据集上的QML是否会实现这样的优势。在这项工作中,我们争辩说,应该使用由量子状态组成的量子数据集。为此目的,我们介绍了由量子状态组成的Ntangled DataSet,其数量和多分纠缠的类型。我们首先展示如何培训量子神经网络,以在Ntangled DataSet中生成状态。然后,我们使用Ntangled DataSet来获得用于监督学习分类任务的基准测试QML模型。我们还考虑一个基于替代的纠缠基数据集,其是可扩展的,并且由量子电路准备的状态与不同深度的状态组成。作为我们的结果的副产品,我们介绍了一种用于产生多重石纠缠态的新方法,为量子纠缠理论提供量子神经网络的用例。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译