合成控制方法开创了一类强大的数据驱动技术,以估算捐助单元的单位的反事实现实。从本质上讲,该技术涉及在干预前时期安装的线性模型,该模型结合了供体结果以产生反事实。但是,使用时间不足的权重在每个时间实例上线性组合空间信息都无法捕获重要的单位间和单位内的时间上下文以及真实数据的复杂非线性动力学。相反,我们提出了一种在干预开始之前使用局部时空信息作为估计反事实序列的有希望的方法的方法。为此,我们建议了一个变压器模型,该模型利用特定的位置嵌入,修改的解码器掩模以及一项新的预训练任务来执行时空序列到序列建模。我们对合成数据的实验证明了我们方法在典型的小型供体池设置中的功效及其对噪声的稳健性。我们还通过模拟全州范围的公共卫生政策来评估其有效性,对哮喘药物进行支持,以支持随机对照试验的疾病,以及针对弗里德雷希共济失调的患者改进的医疗干预措施,从而在人口和患者水平上产生可行的医疗保健见解,以评估其有效性。临床决策并促进个性化治疗。
translated by 谷歌翻译
使用面板数据进行因果推断是社会科学研究的核心挑战。预测方法的进步可以通过更准确地预测未发生治疗的治疗单元的反事实演变来促进这项任务。在本文中,我们借鉴了新开发的时间序列预测(N-Beats算法)的深度神经体系结构。我们通过合并控制单元的领先值来预测处理后的处理单元的“合成”未经处理的版本,从传统的时间序列应用程序中调整了此方法。我们将从此方法得出的估计量称为合成器,发现它在一系列设置中的传统双向固定效果和合成控制方法显着优于传统的双向固定效果和合成控制方法。我们还发现,相对于最新的面板估计方法,例如矩阵完成和差异中的合成差异,合成器具有可比性或更准确的性能。我们的结果强调了如何利用预测文献的进步来改善面板设置的因果推断。
translated by 谷歌翻译
选择每个患者的最佳治疗计划需要随着时间的推移而准确地预测其结果轨迹的函数。虽然大型观察数据集构成丰富的信息来源,但他们也包含偏差,因为处理很少在实践中随机分配。为了提供准确和无偏见的预测,我们介绍了解除戒备的反事实经常性网络(DCRN),一种新的序列到序列架构,其通过学习患者历史的时间随时间估计治疗结果,这些历史记录被解除为三个单独的潜在因子:治疗因素,影响只有治疗选择;结果因素,影响结果;和一个混杂因素,影响两者。通过架构,完全受到治疗影响的因果结构随着时间的推移,我们推进预测准确性和疾病的理解,因为我们的建筑允许从业者推断哪个患者的轨迹影响哪些患者的轨迹,对比该领域的其他方法对比其他方法。我们证明DCRN在预测治疗响应中的当前最先进的方法,在实际和模拟数据中优于最新的方法。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
估算观察数据的个性化治疗效果(ITES)对于决策至关重要。为了获得非偏见的ITE估计,常见的假设是所有混杂因素都被观察到。然而,在实践中,我们不太可能直接观察这些混乱。相反,我们经常遵守真正的混乱的噪音测量,这可以作为有效代理。在本文中,我们解决了在观察嘈杂的代理而不是真正的混乱中估算ITE的问题。为此,我们开发了一种Deconfound Temporal AutoEncoder,这是一种利用观察到嘈杂的代理来学习反映真正隐藏的混淆的隐藏嵌入的新方法。特别地,DTA将长短期存储器自动统计器组合出具有因果正则化惩罚,该惩罚使得有条件独立于所学习的隐藏嵌入的潜在结果和治疗分配。通过DTA学习隐藏的嵌入后,最先进的结果模型可用于控制它并获得ITE的无偏见估计。使用综合性和现实世界的医疗数据,我们通过通过大幅保证金改善最先进的基准来证明我们的DTA的有效性。
translated by 谷歌翻译
随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
为目标疾病开发新药物是一项耗时且昂贵的任务,药物重新利用已成为药物开发领域的流行话题。随着许多健康索赔数据可用,已经对数据进行了许多研究。现实世界的数据嘈杂,稀疏,并且具有许多混杂因素。此外,许多研究表明,药物的作用在人群中是异质的。近年来已经出现了许多有关估计异构治疗效果(HTE)(HTE)的高级机器学习模型,并已应用于计量经济学和机器学习社区。这些研究将医学和药物开发视为主要应用领域,但是从HTE方法论到药物开发的转化研究有限。我们旨在将HTE方法介绍到医疗保健领域,并在通过基准实验进行医疗保健行政索赔数据进行基准实验时提供可行性考虑。另外,我们希望使用基准实验来展示如何将模型应用于医疗保健研究时如何解释和评估模型。通过将最近的HTE技术引入生物医学信息学社区的广泛读者,我们希望通过机器学习促进广泛采用因果推断。我们还希望提供HTE具有个性化药物有效性的可行性。
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译
由于混杂偏见的复杂情况,使用观察数据估算治疗效果,尤其是个性化治疗效果(ITE),这是具有挑战性的。纵向观察数据估算治疗效果的现有方法通常是基于“不满意”的强烈假设,在现实世界实践中很难实现。在本文中,我们提出了变异的时间变形器(VTD),这种方法使用代理(即用于无法观察到的变量)来利用纵向设置中深层嵌入的方法。具体而言,VTD利用观察到的代理学习隐藏的嵌入,以反映观测数据中真正隐藏的混杂因素。因此,我们的VTD方法不依赖“不符”假设。我们在合成和实际临床数据上测试了VTD方法,结果表明,与其他现有模型相比,隐藏混杂性是主要偏见时我们的方法有效。
translated by 谷歌翻译
In the new era of personalization, learning the heterogeneous treatment effect (HTE) becomes an inevitable trend with numerous applications. Yet, most existing HTE estimation methods focus on independently and identically distributed observations and cannot handle the non-stationarity and temporal dependency in the common panel data setting. The treatment evaluators developed for panel data, on the other hand, typically ignore the individualized information. To fill the gap, in this paper, we initialize the study of HTE estimation in panel data. Under different assumptions for HTE identifiability, we propose the corresponding heterogeneous one-side and two-side synthetic learner, namely H1SL and H2SL, by leveraging the state-of-the-art HTE estimator for non-panel data and generalizing the synthetic control method that allows flexible data generating process. We establish the convergence rates of the proposed estimators. The superior performance of the proposed methods over existing ones is demonstrated by extensive numerical studies.
translated by 谷歌翻译
数据驱动的社会事件预测方法利用相关的历史信息来预测未来的事件。这些方法依赖于历史标记数据,并且当数据有限或质量差时无法准确地预测事件。研究事件之间的因果效应超出相关性分析,并且可以有助于更强大的事件预测。然而,由于若干因素,在数据驱动事件预测中纳入因果区分析是具有挑战性的:(i)事件发生在复杂和充满活力的社交环境中。许多未观察到的变量,即隐藏的混乱,影响潜在的原因和结果。 (ii)给予时尚非独立和相同分布的(非IID)数据,为准确的因果效应估计建模隐藏的混淆并不差。在这项工作中,我们介绍了一个深入的学习框架,将因果效应估计整合到事件预测中。我们首先研究了从时空属性的观察事件数据的单个治疗效果(ITE)估计的问题,并提出了一种新的因果推断模型来估计ites。然后,我们将学习的事件相关的因果信息纳入事件预测作为先验知识。引入了两个强大的学习模块,包括特征重载模块和近似约束损耗,以实现先验知识注入。我们通过将学习的因果信息送入不同的深度学习方法,评估了真实世界事件数据集的提出的因果推断模型,并验证了在事件预测中提出的强大学习模块的有效性。实验结果展示了社会事件中拟议的因果推断模型的强度,并展示了社会事件预测中强大的学习模块的有益特性。
translated by 谷歌翻译
绘制因果推断的基本挑战是,任何单位都没有完全观察到反事实。此外,在观察性研究中,治疗分配可能会混淆。在不满足的条件下,已经出现了许多统计方法,这些方法在给定预处理的协变量下,包括基于倾向得分的方法,基于预后分数的方法和双重稳健方法。不幸的是,对于应用研究人员而言,没有“一定大小的”因果方法可以在普遍上表现出色。实际上,因果方法主要根据手工制作的模拟数据进行定量评估。这样的数据产生程序可能具有有限的价值,因为它们通常是现实的风格化模型。它们被简化为障碍性,缺乏现实世界数据的复杂性。对于应用研究人员,了解方法对手头数据的表现效果很好至关重要。我们的工作介绍了基于生成模型的深层框架,以验证因果推理方法。该框架的新颖性源于其产生锚定在观察到的样品的经验分布上的合成数据的能力,因此与后者几乎没有区别。该方法使用户可以为因果效应的形式和幅度指定地面真理,并将偏见作为协变量的功能。因此,模拟数据集用于评估与观察到的样本相似的数据时,各种因果估计方法的潜在性能。我们证明了Credence在广泛的仿真研究中准确评估因果估计技术的相对性能以及来自Lalonde和Project Star研究的两个现实世界数据应用的能力。
translated by 谷歌翻译
有许多可用于选择优先考虑治疗的可用方法,包括基于治疗效果估计,风险评分和手工制作规则的遵循申请。我们将秩加权平均治疗效应(RATY)指标作为一种简单常见的指标系列,用于比较水平竞争范围的治疗优先级规则。对于如何获得优先级规则,率是不可知的,并且仅根据他们在识别受益于治疗中受益的单位的方式进行评估。我们定义了一系列速率估算器,并证明了一个中央限位定理,可以在各种随机和观测研究环境中实现渐近精确的推断。我们为使用自主置信区间的使用提供了理由,以及用于测试关于治疗效果中的异质性的假设的框架,与优先级规则相关。我们对速率的定义嵌套了许多现有度量,包括QINI系数,以及我们的分析直接产生了这些指标的推论方法。我们展示了我们从个性化医学和营销的示例中的方法。在医疗环境中,使用来自Sprint和Accor-BP随机对照试验的数据,我们发现没有明显的证据证明异质治疗效果。另一方面,在大量的营销审判中,我们在一些数字广告活动的治疗效果中发现了具有的强大证据,并证明了如何使用率如何比较优先考虑估计风险的目标规则与估计治疗效益优先考虑的目标规则。
translated by 谷歌翻译
电力行业正在大力实施智能网格技术,以提高可靠性,可用性,安全性和效率。该实施需要技术进步,标准和法规的发展以及测试和计划。智能电网载荷预测和管理对于降低需求波动和改善连接发电机,分销商和零售商的市场机制至关重要。在政策实施或外部干预措施中,有必要分析其对电力需求的影响的不确定性,以使系统对需求的波动更加准确。本文分析了外部干预的不确定性对电力需求的影响。它实现了一种结合概率和全局预测模型的框架,使用深度学习方法来估计干预措施的因果影响分布。通过预测受影响实例的反事实分布结果,然后将其与实际结果进行对比来评估因果效应。我们将COVID-19锁定对能源使用的影响视为评估这种干预对电力需求分布的不均匀影响的案例研究。我们可以证明,在澳大利亚和某些欧洲国家的最初封锁期间,槽通常比峰值更大的下降,而平均值几乎不受影响。
translated by 谷歌翻译
Synthetic control methods often rely on matching pre-treatment characteristics (called predictors) of the treated unit. The choice of predictors and how they are weighted plays a key role in the performance and interpretability of synthetic control estimators. This paper proposes the use of a sparse synthetic control procedure that penalizes the number of predictors used in generating the counterfactual to select the most important predictors. We derive, in a linear factor model framework, a new model selection consistency result and show that the penalized procedure has a faster mean squared error convergence rate. Through a simulation study, we then show that the sparse synthetic control achieves lower bias and has better post-treatment performance than the un-penalized synthetic control. Finally, we apply the method to revisit the study of the passage of Proposition 99 in California in an augmented setting with a large number of predictors available.
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译
在制定政策指南时,随机对照试验(RCT)代表了黄金标准。但是,RCT通常是狭窄的,并且缺乏更广泛的感兴趣人群的数据。这些人群中的因果效应通常是使用观察数据集估算的,这可能会遭受未观察到的混杂和选择偏见。考虑到一组观察估计(例如,来自多项研究),我们提出了一个试图拒绝偏见的观察性估计值的元偏值。我们使用验证效应,可以从RCT和观察数据中推断出的因果效应。在拒绝未通过此测试的估计器之后,我们对RCT中未观察到的亚组的外推性效应产生了保守的置信区间。假设至少一个观察估计量在验证和外推效果方面是渐近正常且一致的,我们为我们算法输出的间隔的覆盖率概率提供了保证。为了促进在跨数据集的因果效应运输的设置中,我们给出的条件下,即使使用灵活的机器学习方法用于估计滋扰参数,群体平均治疗效应的双重稳定估计值也是渐近的正常。我们说明了方法在半合成和现实世界数据集上的特性,并表明它与标准的荟萃分析技术相比。
translated by 谷歌翻译