估算观察数据的个性化治疗效果(ITES)对于决策至关重要。为了获得非偏见的ITE估计,常见的假设是所有混杂因素都被观察到。然而,在实践中,我们不太可能直接观察这些混乱。相反,我们经常遵守真正的混乱的噪音测量,这可以作为有效代理。在本文中,我们解决了在观察嘈杂的代理而不是真正的混乱中估算ITE的问题。为此,我们开发了一种Deconfound Temporal AutoEncoder,这是一种利用观察到嘈杂的代理来学习反映真正隐藏的混淆的隐藏嵌入的新方法。特别地,DTA将长短期存储器自动统计器组合出具有因果正则化惩罚,该惩罚使得有条件独立于所学习的隐藏嵌入的潜在结果和治疗分配。通过DTA学习隐藏的嵌入后,最先进的结果模型可用于控制它并获得ITE的无偏见估计。使用综合性和现实世界的医疗数据,我们通过通过大幅保证金改善最先进的基准来证明我们的DTA的有效性。
translated by 谷歌翻译
由于混杂偏见的复杂情况,使用观察数据估算治疗效果,尤其是个性化治疗效果(ITE),这是具有挑战性的。纵向观察数据估算治疗效果的现有方法通常是基于“不满意”的强烈假设,在现实世界实践中很难实现。在本文中,我们提出了变异的时间变形器(VTD),这种方法使用代理(即用于无法观察到的变量)来利用纵向设置中深层嵌入的方法。具体而言,VTD利用观察到的代理学习隐藏的嵌入,以反映观测数据中真正隐藏的混杂因素。因此,我们的VTD方法不依赖“不符”假设。我们在合成和实际临床数据上测试了VTD方法,结果表明,与其他现有模型相比,隐藏混杂性是主要偏见时我们的方法有效。
translated by 谷歌翻译
选择每个患者的最佳治疗计划需要随着时间的推移而准确地预测其结果轨迹的函数。虽然大型观察数据集构成丰富的信息来源,但他们也包含偏差,因为处理很少在实践中随机分配。为了提供准确和无偏见的预测,我们介绍了解除戒备的反事实经常性网络(DCRN),一种新的序列到序列架构,其通过学习患者历史的时间随时间估计治疗结果,这些历史记录被解除为三个单独的潜在因子:治疗因素,影响只有治疗选择;结果因素,影响结果;和一个混杂因素,影响两者。通过架构,完全受到治疗影响的因果结构随着时间的推移,我们推进预测准确性和疾病的理解,因为我们的建筑允许从业者推断哪个患者的轨迹影响哪些患者的轨迹,对比该领域的其他方法对比其他方法。我们证明DCRN在预测治疗响应中的当前最先进的方法,在实际和模拟数据中优于最新的方法。
translated by 谷歌翻译
随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
在存在潜在变量的情况下,从观察数据中估算因果关系的效果有时会导致虚假关系,这可能被错误地认为是因果关系。这是许多领域的重要问题,例如金融和气候科学。我们提出了序性因果效应变异自动编码器(SCEVAE),这是一种在隐藏混杂下的时间序列因果关系分析的新方法。它基于CEVAE框架和复发性神经网络。通过基于Pearl的Do-Calculus使用直接因果标准来计算因果链接的混杂变量强度。我们通过将其应用于具有线性和非线性因果链接的合成数据集,以显示SCEVAE的功效。此外,我们将方法应用于真实的气溶胶气候观察数据。我们将我们的方法与在合成数据上有或没有替代混杂因素的时间序列变形方法进行比较。我们证明我们的方法通过将两种方法与地面真理进行比较来表现更好。对于真实数据,我们使用因果链接的专家知识,并显示正确的代理变量的使用如何帮助数据重建。
translated by 谷歌翻译
观察数据中估算单个治疗效果(ITE)在许多领域,例如个性化医学等领域。但是,实际上,治疗分配通常被未观察到的变量混淆,因此引入了偏见。消除偏见的一种补救措施是使用仪器变量(IVS)。此类环境在医学中广泛存在(例如,将合规性用作二进制IV的试验)。在本文中,我们提出了一个新颖的,可靠的机器学习框架,称为MRIV,用于使用二进制IV估算ITES,从而产生无偏见的ITE估计器。与以前的二进制IV的工作不同,我们的框架通过伪结果回归直接估算了ITE。 (1)我们提供了一个理论分析,我们表明我们的框架产生了多重稳定的收敛速率:即使几个滋扰估计器的收敛缓慢,我们的ITE估计器也会达到快速收敛。 (2)我们进一步表明,我们的框架渐近地优于最先进的插件IV方法,以进行ITE估计。 (3)我们以理论结果为基础,并提出了一种使用二进制IVS的ITE估算的定制的,称为MRIV-NET的深度神经网络结构。在各种计算实验中,我们从经验上证明了我们的MRIV-NET实现最先进的性能。据我们所知,我们的MRIV是第一个机器学习框架,用于估算显示出倍增功能的二进制IV设置。
translated by 谷歌翻译
合成控制方法开创了一类强大的数据驱动技术,以估算捐助单元的单位的反事实现实。从本质上讲,该技术涉及在干预前时期安装的线性模型,该模型结合了供体结果以产生反事实。但是,使用时间不足的权重在每个时间实例上线性组合空间信息都无法捕获重要的单位间和单位内的时间上下文以及真实数据的复杂非线性动力学。相反,我们提出了一种在干预开始之前使用局部时空信息作为估计反事实序列的有希望的方法的方法。为此,我们建议了一个变压器模型,该模型利用特定的位置嵌入,修改的解码器掩模以及一项新的预训练任务来执行时空序列到序列建模。我们对合成数据的实验证明了我们方法在典型的小型供体池设置中的功效及其对噪声的稳健性。我们还通过模拟全州范围的公共卫生政策来评估其有效性,对哮喘药物进行支持,以支持随机对照试验的疾病,以及针对弗里德雷希共济失调的患者改进的医疗干预措施,从而在人口和患者水平上产生可行的医疗保健见解,以评估其有效性。临床决策并促进个性化治疗。
translated by 谷歌翻译
绘制因果推断的基本挑战是,任何单位都没有完全观察到反事实。此外,在观察性研究中,治疗分配可能会混淆。在不满足的条件下,已经出现了许多统计方法,这些方法在给定预处理的协变量下,包括基于倾向得分的方法,基于预后分数的方法和双重稳健方法。不幸的是,对于应用研究人员而言,没有“一定大小的”因果方法可以在普遍上表现出色。实际上,因果方法主要根据手工制作的模拟数据进行定量评估。这样的数据产生程序可能具有有限的价值,因为它们通常是现实的风格化模型。它们被简化为障碍性,缺乏现实世界数据的复杂性。对于应用研究人员,了解方法对手头数据的表现效果很好至关重要。我们的工作介绍了基于生成模型的深层框架,以验证因果推理方法。该框架的新颖性源于其产生锚定在观察到的样品的经验分布上的合成数据的能力,因此与后者几乎没有区别。该方法使用户可以为因果效应的形式和幅度指定地面真理,并将偏见作为协变量的功能。因此,模拟数据集用于评估与观察到的样本相似的数据时,各种因果估计方法的潜在性能。我们证明了Credence在广泛的仿真研究中准确评估因果估计技术的相对性能以及来自Lalonde和Project Star研究的两个现实世界数据应用的能力。
translated by 谷歌翻译
这项工作提出了M3E2,一种多任务学习神经网络模型来估计多种治疗的效果。与现有方法相比,M3E2对于同时应用于同一单元,连续和二元处理以及许多协变量的多种治疗效果是鲁棒的。我们将M3E2与三个基准数据集中的三个基线进行比较:两个具有多种治疗和一个待遇。我们的分析表明,我们的方法具有卓越的性能,制作了对真实治疗效果的更大的自信估计。代码可在github.com/raquelaoki/m3e2上获得。
translated by 谷歌翻译
因果推断是在采用干预时估计因果关系中的因果效应。确切地说,在具有二进制干预措施的因果模型中,即控制和治疗,因果效应仅仅是事实和反事实之间的差异。困难是必须估算反事实,因此因果效应只能是估计。估计反事实的主要挑战是确定影响结果和治疗的混杂因素。一种典型的方法是将因果推论作为监督学习问题,因此可以预测反事实。包括线性回归和深度学习模型,最近的机器学习方法已适应因果推断。在本文中,我们提出了一种通过使用变分信息瓶颈(CEVIB)来估计因果效应的方法。有希望的点是,VIB能够自然地将变量从数据中蒸馏出来,从而可以通过使用观察数据来估计因果效应。我们通过将CEVIB应用于三个数据集,表明我们的方法实现了最佳性能,将其应用于其他方法。我们还实验表明了我们方法的鲁棒性。
translated by 谷歌翻译
Determining causal effects of temporal multi-intervention assists decision-making. Restricted by time-varying bias, selection bias, and interactions of multiple interventions, the disentanglement and estimation of multiple treatment effects from individual temporal data is still rare. To tackle these challenges, we propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt). TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions which further improves estimation accuracy. Through implementing experiments on two real-world datasets from distinct fields, the proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
translated by 谷歌翻译
在广泛的任务中,在包括医疗处理,广告和营销和政策制定的发​​展中,对观测数据进行因果推断非常有用。使用观察数据进行因果推断有两种重大挑战:治疗分配异质性(\ Texit {IE},治疗和未经处理的群体之间的差异),并且没有反事实数据(\ TEXTIT {IE},不知道是什么已经发生了,如果确实得到治疗的人,反而尚未得到治疗)。通过组合结构化推论和有针对性的学习来解决这两个挑战。在结构方面,我们将联合分布分解为风险,混淆,仪器和杂项因素,以及在目标学习方面,我们应用来自影响曲线的规则器,以减少残余偏差。进行了一项消融研究,对基准数据集进行评估表明,TVAE具有竞争力和最先进的艺术表现。
translated by 谷歌翻译
Learning individual-level causal effects from observational data, such as inferring the most effective medication for a specific patient, is a problem of growing importance for policy makers. The most important aspect of inferring causal effects from observational data is the handling of confounders, factors that affect both an intervention and its outcome. A carefully designed observational study attempts to measure all important confounders. However, even if one does not have direct access to all confounders, there may exist noisy and uncertain measurement of proxies for confounders. We build on recent advances in latent variable modeling to simultaneously estimate the unknown latent space summarizing the confounders and the causal effect. Our method is based on Variational Autoencoders (VAE) which follow the causal structure of inference with proxies. We show our method is significantly more robust than existing methods, and matches the state-of-the-art on previous benchmarks focused on individual treatment effects.
translated by 谷歌翻译
数据驱动的社会事件预测方法利用相关的历史信息来预测未来的事件。这些方法依赖于历史标记数据,并且当数据有限或质量差时无法准确地预测事件。研究事件之间的因果效应超出相关性分析,并且可以有助于更强大的事件预测。然而,由于若干因素,在数据驱动事件预测中纳入因果区分析是具有挑战性的:(i)事件发生在复杂和充满活力的社交环境中。许多未观察到的变量,即隐藏的混乱,影响潜在的原因和结果。 (ii)给予时尚非独立和相同分布的(非IID)数据,为准确的因果效应估计建模隐藏的混淆并不差。在这项工作中,我们介绍了一个深入的学习框架,将因果效应估计整合到事件预测中。我们首先研究了从时空属性的观察事件数据的单个治疗效果(ITE)估计的问题,并提出了一种新的因果推断模型来估计ites。然后,我们将学习的事件相关的因果信息纳入事件预测作为先验知识。引入了两个强大的学习模块,包括特征重载模块和近似约束损耗,以实现先验知识注入。我们通过将学习的因果信息送入不同的深度学习方法,评估了真实世界事件数据集的提出的因果推断模型,并验证了在事件预测中提出的强大学习模块的有效性。实验结果展示了社会事件中拟议的因果推断模型的强度,并展示了社会事件预测中强大的学习模块的有益特性。
translated by 谷歌翻译
Although understanding and characterizing causal effects have become essential in observational studies, it is challenging when the confounders are high-dimensional. In this article, we develop a general framework $\textit{CausalEGM}$ for estimating causal effects by encoding generative modeling, which can be applied in both binary and continuous treatment settings. Under the potential outcome framework with unconfoundedness, we establish a bidirectional transformation between the high-dimensional confounders space and a low-dimensional latent space where the density is known (e.g., multivariate normal distribution). Through this, CausalEGM simultaneously decouples the dependencies of confounders on both treatment and outcome and maps the confounders to the low-dimensional latent space. By conditioning on the low-dimensional latent features, CausalEGM can estimate the causal effect for each individual or the average causal effect within a population. Our theoretical analysis shows that the excess risk for CausalEGM can be bounded through empirical process theory. Under an assumption on encoder-decoder networks, the consistency of the estimate can be guaranteed. In a series of experiments, CausalEGM demonstrates superior performance over existing methods for both binary and continuous treatments. Specifically, we find CausalEGM to be substantially more powerful than competing methods in the presence of large sample sizes and high dimensional confounders. The software of CausalEGM is freely available at https://github.com/SUwonglab/CausalEGM.
translated by 谷歌翻译
为目标疾病开发新药物是一项耗时且昂贵的任务,药物重新利用已成为药物开发领域的流行话题。随着许多健康索赔数据可用,已经对数据进行了许多研究。现实世界的数据嘈杂,稀疏,并且具有许多混杂因素。此外,许多研究表明,药物的作用在人群中是异质的。近年来已经出现了许多有关估计异构治疗效果(HTE)(HTE)的高级机器学习模型,并已应用于计量经济学和机器学习社区。这些研究将医学和药物开发视为主要应用领域,但是从HTE方法论到药物开发的转化研究有限。我们旨在将HTE方法介绍到医疗保健领域,并在通过基准实验进行医疗保健行政索赔数据进行基准实验时提供可行性考虑。另外,我们希望使用基准实验来展示如何将模型应用于医疗保健研究时如何解释和评估模型。通过将最近的HTE技术引入生物医学信息学社区的广泛读者,我们希望通过机器学习促进广泛采用因果推断。我们还希望提供HTE具有个性化药物有效性的可行性。
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译
因果推理的现有机器学习方法通​​常通过潜在结果平均值(例如平均治疗效应)估计数量。但是,此类数量不会捕获有关潜在结果分布的完整信息。在这项工作中,我们估计了观察数据干预后潜在结果的密度。具体而言,我们为此目的提出了一种新颖的,全参数的深度学习方法,称为介入归一化流。我们的介入归一化流提供了正确归一化的密度估计器。为此,我们介绍了两个正常流的迭代培训,即(i)教师流以估计令人讨厌的参数,以及(ii)学生流量,用于参数估计潜在结果的密度。为了对学生流参数的有效且双重稳定的估计,我们基于一步偏置校正开发了一个自定义的可拖动优化目标。在各种实验中,我们证明了我们的干预归一化流具有表达性和高效,并且可以很好地扩展样本量和高维混杂。据我们所知,我们的介入归一化流是第一种完全参数的深度学习方法,用于估计潜在结果。
translated by 谷歌翻译