随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
选择每个患者的最佳治疗计划需要随着时间的推移而准确地预测其结果轨迹的函数。虽然大型观察数据集构成丰富的信息来源,但他们也包含偏差,因为处理很少在实践中随机分配。为了提供准确和无偏见的预测,我们介绍了解除戒备的反事实经常性网络(DCRN),一种新的序列到序列架构,其通过学习患者历史的时间随时间估计治疗结果,这些历史记录被解除为三个单独的潜在因子:治疗因素,影响只有治疗选择;结果因素,影响结果;和一个混杂因素,影响两者。通过架构,完全受到治疗影响的因果结构随着时间的推移,我们推进预测准确性和疾病的理解,因为我们的建筑允许从业者推断哪个患者的轨迹影响哪些患者的轨迹,对比该领域的其他方法对比其他方法。我们证明DCRN在预测治疗响应中的当前最先进的方法,在实际和模拟数据中优于最新的方法。
translated by 谷歌翻译
因果关系的概念在人类认知中起着重要作用。在过去的几十年中,在许多领域(例如计算机科学,医学,经济学和教育)中,因果推论已经得到很好的发展。随着深度学习技术的发展,它越来越多地用于针对反事实数据的因果推断。通常,深层因果模型将协变量的特征映射到表示空间,然后设计各种客观优化函数,以根据不同的优化方法公正地估算反事实数据。本文重点介绍了深层因果模型的调查,其核心贡献如下:1)我们在多种疗法和连续剂量治疗下提供相关指标; 2)我们从时间开发和方法分类的角度综合了深层因果模型的全面概述; 3)我们协助有关相关数据集和源代码的详细且全面的分类和分析。
translated by 谷歌翻译
决策者需要在采用新的治疗政策之前预测结果的发展,该政策定义了何时以及如何连续地影响结果的治疗序列。通常,预测介入的未来结果轨迹的算法将未来治疗的固定顺序作为输入。这要么忽略了未来治疗对结果之前的结果的依赖性,要么隐含地假设已知治疗政策,因此排除了该政策未知或需要反事实分析的情况。为了应对这些局限性,我们开发了一种用于治疗和结果的联合模型,该模型允许估计处理策略和顺序治疗(OUT COMECTION数据)的影响。它可以回答有关治疗政策干预措施的介入和反事实查询,因为我们使用有关血糖进展的现实数据显示,并在此基础上进行了模拟研究。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
由于混杂偏见的复杂情况,使用观察数据估算治疗效果,尤其是个性化治疗效果(ITE),这是具有挑战性的。纵向观察数据估算治疗效果的现有方法通常是基于“不满意”的强烈假设,在现实世界实践中很难实现。在本文中,我们提出了变异的时间变形器(VTD),这种方法使用代理(即用于无法观察到的变量)来利用纵向设置中深层嵌入的方法。具体而言,VTD利用观察到的代理学习隐藏的嵌入,以反映观测数据中真正隐藏的混杂因素。因此,我们的VTD方法不依赖“不符”假设。我们在合成和实际临床数据上测试了VTD方法,结果表明,与其他现有模型相比,隐藏混杂性是主要偏见时我们的方法有效。
translated by 谷歌翻译
估算观察数据的个性化治疗效果(ITES)对于决策至关重要。为了获得非偏见的ITE估计,常见的假设是所有混杂因素都被观察到。然而,在实践中,我们不太可能直接观察这些混乱。相反,我们经常遵守真正的混乱的噪音测量,这可以作为有效代理。在本文中,我们解决了在观察嘈杂的代理而不是真正的混乱中估算ITE的问题。为此,我们开发了一种Deconfound Temporal AutoEncoder,这是一种利用观察到嘈杂的代理来学习反映真正隐藏的混淆的隐藏嵌入的新方法。特别地,DTA将长短期存储器自动统计器组合出具有因果正则化惩罚,该惩罚使得有条件独立于所学习的隐藏嵌入的潜在结果和治疗分配。通过DTA学习隐藏的嵌入后,最先进的结果模型可用于控制它并获得ITE的无偏见估计。使用综合性和现实世界的医疗数据,我们通过通过大幅保证金改善最先进的基准来证明我们的DTA的有效性。
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译
影响重症患者护理的许多基本问题会带来类似的分析挑战:医生无法轻易估计处于危险的医疗状况或治疗的影响,因为医疗状况和药物的因果影响是纠缠的。他们也无法轻易进行研究:没有足够的高质量数据来进行高维观察性因果推断,并且通常无法在道德上进行RCT。但是,机械知识可获得,包括如何吸收人体药物,并且这些知识与有限数据的结合可能就足够了 - 如果我们知道如何结合它们。在这项工作中,我们提出了一个框架,用于在这些复杂条件下对重症患者的因果影响估算:随着时间的流逝,药物与观察之间的相互作用,不大的患者数据集以及可以代替缺乏数据的机械知识。我们将此框架应用于影响重症患者的极其重要的问题,即癫痫发作和大脑中其他潜在有害的电气事件的影响(称为癫痫样活动 - EA)对结局。鉴于涉及的高赌注和数据中的高噪声,可解释性对于解决此类复杂问题的故障排除至关重要。我们匹配的小组的解释性使神经科医生可以执行图表审查,以验证我们的因果分析的质量。例如,我们的工作表明,患者经历了高水平的癫痫发作般的活动(75%的EA负担),并且未经治疗的六个小时的窗口未受治疗,平均而言,这种不良后果的机会增加了16.7%。作为严重的大脑损伤,终生残疾或死亡。我们发现患有轻度但长期EA的患者(平均EA负担> = 50%)患有不良结果的风险增加了11.2%。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译
纵向生物医学数据通常是稀疏时间网格和个体特定发展模式的特征。具体而言,在流行病学队列研究和临床登记处,我们面临的问题是在研究早期阶段中可以从数据中学到的问题,只有基线表征和一个后续测量。灵感来自最近的进步,允许将深度学习与动态建模相结合,我们调查这些方法是否可用于揭示复杂结构,特别是对于每个单独的两个观察时间点的极端小数据设置。然后,通过利用个体的相似性,可以使用不规则间距来获得有关个体动态的更多信息。我们简要概述了变形的自动化器(VAES)如何作为深度学习方法,可以与普通微分方程(ODES)相关联用于动态建模,然后具体研究这种方法的可行性,即提供个人特定的潜在轨迹的方法通过包括规律性假设和个人的相似性。我们还提供了对这种深度学习方法的描述作为过滤任务,以提供统计的视角。使用模拟数据,我们展示了方法可以在多大程度上从多大程度上恢复具有两个和四个未知参数的颂歌系统的单个轨迹,以及使用具有类似轨迹的个体群体,以及其崩溃的地方。结果表明,即使在极端的小数据设置中,这种动态深度学习方法也可能是有用的,但需要仔细调整。
translated by 谷歌翻译
Determining causal effects of temporal multi-intervention assists decision-making. Restricted by time-varying bias, selection bias, and interactions of multiple interventions, the disentanglement and estimation of multiple treatment effects from individual temporal data is still rare. To tackle these challenges, we propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt). TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions which further improves estimation accuracy. Through implementing experiments on two real-world datasets from distinct fields, the proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
因果推断能够估计治疗效果(即,治疗结果的因果效果),使各个领域的决策受益。本研究中的一个基本挑战是观察数据的治疗偏见。为了提高对因果推断的观察研究的有效性,基于代表的方法作为最先进的方法表明了治疗效果估计的卓越性能。基于大多数基于表示的方法假设所有观察到的协变量都是预处理的(即,不受治疗影响的影响),并学习这些观察到的协变量的平衡表示,以估算治疗效果。不幸的是,这种假设往往在实践中往往是太严格的要求,因为一些协调因子是通过对治疗的干预进行改变(即,后治疗)来改变。相比之下,从不变的协变量中学到的平衡表示因此偏置治疗效果估计。
translated by 谷歌翻译
Electronic Health Records (EHRs) are a valuable asset to facilitate clinical research and point of care applications; however, many challenges such as data privacy concerns impede its optimal utilization. Deep generative models, particularly, Generative Adversarial Networks (GANs) show great promise in generating synthetic EHR data by learning underlying data distributions while achieving excellent performance and addressing these challenges. This work aims to review the major developments in various applications of GANs for EHRs and provides an overview of the proposed methodologies. For this purpose, we combine perspectives from healthcare applications and machine learning techniques in terms of source datasets and the fidelity and privacy evaluation of the generated synthetic datasets. We also compile a list of the metrics and datasets used by the reviewed works, which can be utilized as benchmarks for future research in the field. We conclude by discussing challenges in GANs for EHRs development and proposing recommended practices. We hope that this work motivates novel research development directions in the intersection of healthcare and machine learning.
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
估算高维观测数据的个性化治疗效果在实验设计不可行,不道德或昂贵的情况下是必不可少的。现有方法依赖于拟合对治疗和控制人群的结果的深层模型。然而,当测量单独的结果是昂贵的时,就像肿瘤活检一样,需要一种用于获取每种结果的样本有效的策略。深度贝叶斯主动学习通过选择具有高不确定性的点来提供高效数据采集的框架。然而,现有方法偏置训练数据获取对处理和控制群体之间的非重叠支持区域。这些不是样本效率,因为在这些区域中不可识别治疗效果。我们介绍了因果关系,贝叶斯采集函数接地的信息理论,使数据采集朝向具有重叠支持的地区,以最大限度地提高学习个性化治疗效果的采样效率。我们展示了拟议的综合和半合成数据集IHDP和CMNIST上提出的收购策略及其扩展的表现,旨在模拟常见的数据集偏差和病理学。
translated by 谷歌翻译
为目标疾病开发新药物是一项耗时且昂贵的任务,药物重新利用已成为药物开发领域的流行话题。随着许多健康索赔数据可用,已经对数据进行了许多研究。现实世界的数据嘈杂,稀疏,并且具有许多混杂因素。此外,许多研究表明,药物的作用在人群中是异质的。近年来已经出现了许多有关估计异构治疗效果(HTE)(HTE)的高级机器学习模型,并已应用于计量经济学和机器学习社区。这些研究将医学和药物开发视为主要应用领域,但是从HTE方法论到药物开发的转化研究有限。我们旨在将HTE方法介绍到医疗保健领域,并在通过基准实验进行医疗保健行政索赔数据进行基准实验时提供可行性考虑。另外,我们希望使用基准实验来展示如何将模型应用于医疗保健研究时如何解释和评估模型。通过将最近的HTE技术引入生物医学信息学社区的广泛读者,我们希望通过机器学习促进广泛采用因果推断。我们还希望提供HTE具有个性化药物有效性的可行性。
translated by 谷歌翻译
合成控制方法开创了一类强大的数据驱动技术,以估算捐助单元的单位的反事实现实。从本质上讲,该技术涉及在干预前时期安装的线性模型,该模型结合了供体结果以产生反事实。但是,使用时间不足的权重在每个时间实例上线性组合空间信息都无法捕获重要的单位间和单位内的时间上下文以及真实数据的复杂非线性动力学。相反,我们提出了一种在干预开始之前使用局部时空信息作为估计反事实序列的有希望的方法的方法。为此,我们建议了一个变压器模型,该模型利用特定的位置嵌入,修改的解码器掩模以及一项新的预训练任务来执行时空序列到序列建模。我们对合成数据的实验证明了我们方法在典型的小型供体池设置中的功效及其对噪声的稳健性。我们还通过模拟全州范围的公共卫生政策来评估其有效性,对哮喘药物进行支持,以支持随机对照试验的疾病,以及针对弗里德雷希共济失调的患者改进的医疗干预措施,从而在人口和患者水平上产生可行的医疗保健见解,以评估其有效性。临床决策并促进个性化治疗。
translated by 谷歌翻译