从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
在本文中,我们提出了一种使用神经网络的生存分析模型,以及可伸缩优化算法。直接应用最大似然估计(MLE)缩短数据的一个关键技术挑战是评估目标函数及其梯度相对于模型参数需要计算积分。为了解决这一挑战,我们认识到,可以将用于审查数据的MEE视为差分方程约束优化问题,这是一种新颖的视角。在此连接之后,我们通过普通微分方程模拟事件时间的分布,并利用有效的颂歌求解器并伴随敏感性分析来数值评估可能性和梯度。使用这种方法,我们能够1)提供广泛的连续时间存活分布,无需强大的结构假设,2)使用神经网络获得强大的特征表示,3)允许在大规模应用中使用模型估计模型随机梯度下降。通过仿真研究和现实世界数据示例,我们展示了所提出的方法与现有的最先进的深度学习生存分析模型相比的有效性。已在HTTPS://github.com/Jiaqima/soden公开提供拟议的SODEN方法。
translated by 谷歌翻译
由于存在抗抗,因此仅由于例如损失跟踪而仅部分已知的抗抗,因此仅存在抗抗,因此存在于回归建模的具有挑战性。这些问题经常在医疗应用中出现,使生存分析成为医疗保健的生物统计学和机器学习的关键努力,Cox回归模型是最常用的模型。我们描述了一种基于COX回归的学习混合物来模拟各个生存分布的生存分析回归模型的新方法。我们提出了对该模型的预期最大化算法的近似,该算法对混合组进行了艰难的分配,以进行优化效率。在每个组分配中,我们使用深神经网络的每个组内的危险比以及每个混合物组分非参数的基线危害。我们对多个现实世界数据集进行实验,并查看种族和性别患者的死亡率。我们强调了校准在医疗保健环境中的重要性,并证明我们的方法在鉴别性能和校准方面表明了古典和现代生存分析基线,在少数人口统计数据上具有大的收益。
translated by 谷歌翻译
生存分析是事实建模的艺术,在临床治疗决策中起着重要作用。最近,已经提出了由神经ODE建立的连续时间模型进行生存分析。然而,由于神经ODE求解器的计算复杂性很高,神经ODE的训练很慢。在这里,我们提出了一种有效的替代方案,用于柔性连续时间模型,称为生存混合物密度网络(生存MDN)。生存MDN适用于混合密度网络(MDN)的输出的可逆阳性功能。尽管MDN产生灵活的实价分布,但可逆正函数将模型映射到时间域,同时保留可拖动密度。使用四个数据集,我们表明生存MDN的性能优于或类似于一致性的连续和离散时间基准,集成的brier得分和集成的二项式对数可能性。同时,生存MDN的速度也比基于ODE的模型和离散模型中规避的分类问题快。
translated by 谷歌翻译
纵向电子健康记录(EHR)数据的可用性增加导致改善对疾病的理解和新颖表型的发现。大多数聚类算法仅关注患者轨迹,但具有类似轨迹的患者可能具有不同的结果。寻找不同轨迹和结果的患者亚组可以引导未来的药物开发,改善临床试验的招募。我们使用可以加权的重建,结果和聚类损耗开发经常性神经网络自动拓群体以群集EHR数据,以查找不同类型的患者群集。我们展示我们的模型能够从数据偏差和结果差异中发现已知的集群,表现优于基线模型。我们展示了29,222,229美元糖尿病患者的模型性能,显示出发现患有不同轨迹和不同结果的患者的簇,可用于帮助临床决策。
translated by 谷歌翻译
随着时间的流逝,估计反事实结果有可能通过协助决策者回答“假设”问题来解锁个性化医疗保健。现有的因果推理方法通常考虑观察和治疗决策之间的定期离散时间间隔,因此无法自然地模拟不规则采样的数据,这是实践中的共同环境。为了处理任意观察模式,我们将数据解释为基础连续时间过程中的样本,并建议使用受控微分方程的数学明确地对其潜在轨迹进行建模。这导致了一种新方法,即治疗效果神经控制的微分方程(TE-CDE),该方程可在任何时间点评估潜在的结果。此外,对抗性训练用于调整时间依赖性混杂,这在纵向环境中至关重要,这是常规时间序列中未遇到的额外挑战。为了评估解决此问题的解决方案,我们提出了一个基于肿瘤生长模型的可控仿真环境,以反映出各种临床方案的一系列场景。在所有模拟场景中,TE-CDE始终优于现有方法,并具有不规则采样。
translated by 谷歌翻译
Real-time individual endpoint prediction has always been a challenging task but of great clinic utility for both patients and healthcare providers. With 6,879 chronic kidney disease stage 4 (CKD4) patients as a use case, we explored the feasibility and performance of gated recurrent units with decay that models Weibull probability density function (GRU-D-Weibull) as a semi-parametric longitudinal model for real-time individual endpoint prediction. GRU-D-Weibull has a maximum C-index of 0.77 at 4.3 years of follow-up, compared to 0.68 achieved by competing models. The L1-loss of GRU-D-Weibull is ~66% of XGB(AFT), ~60% of MTLR, and ~30% of AFT model at CKD4 index date. The average absolute L1-loss of GRU-D-Weibull is around one year, with a minimum of 40% Parkes serious error after index date. GRU-D-Weibull is not calibrated and significantly underestimates true survival probability. Feature importance tests indicate blood pressure becomes increasingly important during follow-up, while eGFR and blood albumin are less important. Most continuous features have non-linear/parabola impact on predicted survival time, and the results are generally consistent with existing knowledge. GRU-D-Weibull as a semi-parametric temporal model shows advantages in built-in parameterization of missing, native support for asynchronously arrived measurement, capability of output both probability and point estimates at arbitrary time point for arbitrary prediction horizon, improved discrimination and point estimate accuracy after incorporating newly arrived data. Further research on its performance with more comprehensive input features, in-process or post-process calibration are warranted to benefit CKD4 or alike terminally-ill patients.
translated by 谷歌翻译
Prognostication for lung cancer, a leading cause of mortality, remains a complex task, as it needs to quantify the associations of risk factors and health events spanning a patient's entire life. One challenge is that an individual's disease course involves non-terminal (e.g., disease progression) and terminal (e.g., death) events, which form semi-competing relationships. Our motivation comes from the Boston Lung Cancer Study, a large lung cancer survival cohort, which investigates how risk factors influence a patient's disease trajectory. Following developments in the prediction of time-to-event outcomes with neural networks, deep learning has become a focal area for the development of risk prediction methods in survival analysis. However, limited work has been done to predict multi-state or semi-competing risk outcomes, where a patient may experience adverse events such as disease progression prior to death. We propose a novel neural expectation-maximization algorithm to bridge the gap between classical statistical approaches and machine learning. Our algorithm enables estimation of the non-parametric baseline hazards of each state transition, risk functions of predictors, and the degree of dependence among different transitions, via a multi-task deep neural network with transition-specific sub-architectures. We apply our method to the Boston Lung Cancer Study and investigate the impact of clinical and genetic predictors on disease progression and mortality.
translated by 谷歌翻译
疾病的早​​期诊断可能会改善健康结果,例如较高的存活率和较低的治疗成本。随着电子健康记录中的大量信息(EHR),使用机器学习(ML)方法有很大的潜力来对疾病进展进行建模,以旨在早期预测疾病发作和其他结果。在这项工作中,我们采用了神经odes的最新创新来利用EHR的全部时间信息。我们提出了冰节(将临床嵌入与神经普通微分方程的整合),该体系结构在时间上整合临床代码和神经ODE的嵌入,以学习和预测EHR中的患者轨迹。我们将我们的方法应用于公共可用的模拟III和模拟IV数据集,与最新方法相比,报告了预测结果的改进,特别是针对EHR中经常观察到的临床代码。我们还表明,冰节在预测某些医疗状况(例如急性肾衰竭和肺心脏病)方面更有能力,并且还能够随着时间的推移产生患者的风险轨迹,以进行进一步的预测。
translated by 谷歌翻译
我们为身体和生存期的个体老化轨迹建立了一个计算模型,其中包含物理,功能和生物变量,并在人口统计学,生活方式和医学背景信息上进行调节。我们将现代机器学习技术与可解释的交互网络相结合,其中健康变量通过随机动力系统内的显式配对交互来耦合。我们的动态联合可解释网络(DJIN)模型可扩展到大型纵向数据集,是从基线健康状态的个体高维氏体健康轨迹和生存的预测性,并且在卫生变量之间的可解释网络的可解释网络。该网络识别健康变量之间的合理生理连接以及强烈连接的健康变量的集群。我们使用对老化(ELSA)数据的英语纵向研究培训我们的模型,并表明它比多个专用线性模型更好地进行健康结果和生存。我们将模型与灵活的低维潜空间模型进行比较,探讨准确模拟老化健康结果所需的维度。我们的Djin模型可用于生成易于历史的合成人员,以赋予缺失数据,并模拟未来的老化结果给出任意初始健康状态。
translated by 谷歌翻译
机器学习在医疗保健中的应用通常需要处理时间到事实的预测任务,包括不良事件的预测,重新住院或死亡。由于失去随访,此类结果通常受到审查。标准的机器学习方法不能直接地应用于具有审查结果的数据集。在本文中,我们提出了Auton-Survival,这是一个开源存储库,用于简化审查的活动时间或生存数据的工具。Auton Survival包括用于生存回归的工具,存在域移位,反事实估计,风险分层的表型,评估以及治疗效果的估计。通过采用大量SEER肿瘤学发病率数据的现实世界案例研究,我们证明了Auton Survival迅速支持数据科学家在回答复杂健康和流行病学问题方面的能力。
translated by 谷歌翻译
随着越来越多的大型癌症基因组学数据集,机器学习方法在揭示了对癌症发展的新洞察力方面发挥了重要作用。现有方法表明识别癌症存活预测的基因的令人鼓舞的性能,但仍然有限于建模对基因的分布。这里,我们提出了一种新的方法,可以在任何给定的时间点模拟基因表达分布,包括超出观察时间点的范围的那些。为了模拟每位患者的不规则时间序列,其中每位患者是一个观察,我们将具有COX回归的神经常用差分方程(神经颂歌)集成到我们的框架中。我们在TCGA上的八种癌症类型中评估了我们的方法,并观察到了对现有方法的大量改进。我们的可视化结果和进一步的分析表明我们的方法如何用于模拟早期癌症阶段的表达,提供早期癌症鉴定的可能性。
translated by 谷歌翻译
纵向生物医学数据通常是稀疏时间网格和个体特定发展模式的特征。具体而言,在流行病学队列研究和临床登记处,我们面临的问题是在研究早期阶段中可以从数据中学到的问题,只有基线表征和一个后续测量。灵感来自最近的进步,允许将深度学习与动态建模相结合,我们调查这些方法是否可用于揭示复杂结构,特别是对于每个单独的两个观察时间点的极端小数据设置。然后,通过利用个体的相似性,可以使用不规则间距来获得有关个体动态的更多信息。我们简要概述了变形的自动化器(VAES)如何作为深度学习方法,可以与普通微分方程(ODES)相关联用于动态建模,然后具体研究这种方法的可行性,即提供个人特定的潜在轨迹的方法通过包括规律性假设和个人的相似性。我们还提供了对这种深度学习方法的描述作为过滤任务,以提供统计的视角。使用模拟数据,我们展示了方法可以在多大程度上从多大程度上恢复具有两个和四个未知参数的颂歌系统的单个轨迹,以及使用具有类似轨迹的个体群体,以及其崩溃的地方。结果表明,即使在极端的小数据设置中,这种动态深度学习方法也可能是有用的,但需要仔细调整。
translated by 谷歌翻译
神经网络(深度学习)是人工智能中的现代模型,并且在生存分析中已被利用。尽管以前的作品已经显示出一些改进,但培训出色的深度学习模型需要大量数据,这在实践中可能不存在。为了应对这一挑战,我们开发了一个基于Kullback-Leibler(KL)深度学习程序,以将外部生存预测模型与新收集的活动时间数据整合在一起。时间依赖性的KL歧视信息用于衡量外部数据和内部数据之间的差异。这是考虑使用先前信息来处理深度学习生存分析中的简短数据问题的第一项工作。仿真和实际数据结果表明,与以前的工作相比,所提出的模型可实现更好的性能和更高的鲁棒性。
translated by 谷歌翻译
用于生存预测的深层神经网络在歧视方面超过了经典方法,这是患者根据事件的秩序。相反,诸如COX比例危害模型之类的经典方法显示出更好的校准,即对基础分布事件的正确时间预测。特别是在医学领域,预测单个患者的存活至关重要,歧视和校准都是重要的绩效指标。在这里,我们提出了离散的校准生存(DC),这是一个新型的深层神经网络,用于歧视和校准的生存预测,在三个医疗数据集的歧视中优于竞争生存模型,同时在所有离散时间模型中实现最佳校准。 DC的增强性能可以归因于两个新型功能,即可变的时间输出节点间距和新颖的损耗项,可优化未经审查和审查的患者数据的使用。我们认为,DCS是临床应用基于深度学习的生存预测和良好校准的重要一步。
translated by 谷歌翻译
观察生存数据的因果结构提供了关于协变量和事件时间之间关系的重要信息。我们从信息理论源编码参数中获得动机,并且如果采用合适的源编码器,则显示结合所指示的非循环图(DAG)的知识可以是有益的。作为在此上下文中的可能的源编码器中,我们推导出基于变分推理的条件变分性Autiachiater用于因果结构化生存预测,我们将其称为Dagsurv。我们说明了Dagsurv在低和高维合成数据集中的性能,以及诸如元数据集等现实数据集,如元数据集。我们证明,该方法优于其他生存分析基线,如Cox比例危害,Deepsurv和Deephit,这对数据实体之间的潜在因果关系感到遗憾。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
无监督的学习通常用于揭示数据中的群集。然而,不同类型的噪声可能会妨碍来自真实世界的时间序列数据的有用模式的发现。在这项工作中,我们专注于减轻疾病表型群体任务中的间隔审查的干扰。我们开发了一个深入的生成,连续时间模型,时间序列数据串联时间系列,同时纠正审查时间。我们提供了在无噪声模型下的数据中识别群集和延迟条目的条件。
translated by 谷歌翻译
像长期短期内存网络(LSTMS)和门控复发单元(GRUS)相同的经常性神经网络(RNN)是建模顺序数据的流行选择。它们的门控机构允许以来自传入观测的新信息在隐藏状态中编码的先前历史。在许多应用程序中,例如医疗记录,观察时间是不规则的并且携带重要信息。然而,LSTM和GRUS在观察之间假设恒定的时间间隔。为了解决这一挑战,我们提出了连续的经常性单位(CRU)-A神经结构,可以自然地处理观察之间的不规则时间间隔。 CRU的浇注机制采用卡尔曼滤波器的连续制剂,并且根据线性随机微分方程(SDE)和(2)潜伏状态在新观察进入时,在(1)之间的连续潜在传播之间的交替。在实证研究,我们表明CRU可以比神经常规差分方程(神经颂歌)的模型更好地插值不规则时间序列。我们还表明,我们的模型可以从IM-AGES推断动力学,并且卡尔曼有效地单挑出候选人的候选人,从而从嘈杂的观察中获得有价值的状态更新。
translated by 谷歌翻译
基于变压器模型架构的最近深入学习研究在各种域和任务中展示了最先进的性能,主要是在计算机视觉和自然语言处理域中。虽然最近的一些研究已经实施了使用电子健康记录数据的临床任务的变压器,但它们的范围,灵活性和全面性有限。在本研究中,我们提出了一种灵活的基于变换器的EHR嵌入管道和预测模型框架,它引入了利用了医疗域唯一的数据属性的现有工作流程的几个新颖修改。我们展示了灵活设计的可行性,在重症监护病房的案例研究中,我们的模型准确地预测了七种临床结果,这些临床结果与多个未来的时间范围有关的入院和患者死亡率。
translated by 谷歌翻译