用于生存预测的深层神经网络在歧视方面超过了经典方法,这是患者根据事件的秩序。相反,诸如COX比例危害模型之类的经典方法显示出更好的校准,即对基础分布事件的正确时间预测。特别是在医学领域,预测单个患者的存活至关重要,歧视和校准都是重要的绩效指标。在这里,我们提出了离散的校准生存(DC),这是一个新型的深层神经网络,用于歧视和校准的生存预测,在三个医疗数据集的歧视中优于竞争生存模型,同时在所有离散时间模型中实现最佳校准。 DC的增强性能可以归因于两个新型功能,即可变的时间输出节点间距和新颖的损耗项,可优化未经审查和审查的患者数据的使用。我们认为,DCS是临床应用基于深度学习的生存预测和良好校准的重要一步。
translated by 谷歌翻译
由于存在抗抗,因此仅由于例如损失跟踪而仅部分已知的抗抗,因此仅存在抗抗,因此存在于回归建模的具有挑战性。这些问题经常在医疗应用中出现,使生存分析成为医疗保健的生物统计学和机器学习的关键努力,Cox回归模型是最常用的模型。我们描述了一种基于COX回归的学习混合物来模拟各个生存分布的生存分析回归模型的新方法。我们提出了对该模型的预期最大化算法的近似,该算法对混合组进行了艰难的分配,以进行优化效率。在每个组分配中,我们使用深神经网络的每个组内的危险比以及每个混合物组分非参数的基线危害。我们对多个现实世界数据集进行实验,并查看种族和性别患者的死亡率。我们强调了校准在医疗保健环境中的重要性,并证明我们的方法在鉴别性能和校准方面表明了古典和现代生存分析基线,在少数人口统计数据上具有大的收益。
translated by 谷歌翻译
从电子健康记录(EHR)数据中进行有效学习来预测临床结果,这通常是具有挑战性的,因为在不规则的时间段记录的特征和随访的损失以及竞争性事件(例如死亡或疾病进展)。为此,我们提出了一种生成的事实模型,即Survlatent Ode,该模型采用了基于基于微分方程的复发性神经网络(ODE-RNN)作为编码器,以有效地对不规则采样的输入数据进行潜在状态的动力学有效地参数化。然后,我们的模型利用所得的潜在嵌入来灵活地估计多个竞争事件的生存时间,而无需指定事件特定危害功能的形状。我们展示了我们在Mimic-III上的竞争性能,这是一种从重症监护病房收集的自由纵向数据集,预测医院死亡率以及DANA-FARBER癌症研究所(DFCI)的数据,以预测静脉血栓症(静脉血栓症(DFCI)(DFCI)( VTE),是癌症患者的生命并发症,死亡作为竞争事件。幸存ODE优于分层VTE风险组的当前临床标准Khorana风险评分,同时提供临床上有意义且可解释的潜在表示。
translated by 谷歌翻译
神经网络(深度学习)是人工智能中的现代模型,并且在生存分析中已被利用。尽管以前的作品已经显示出一些改进,但培训出色的深度学习模型需要大量数据,这在实践中可能不存在。为了应对这一挑战,我们开发了一个基于Kullback-Leibler(KL)深度学习程序,以将外部生存预测模型与新收集的活动时间数据整合在一起。时间依赖性的KL歧视信息用于衡量外部数据和内部数据之间的差异。这是考虑使用先前信息来处理深度学习生存分析中的简短数据问题的第一项工作。仿真和实际数据结果表明,与以前的工作相比,所提出的模型可实现更好的性能和更高的鲁棒性。
translated by 谷歌翻译
在本文中,我们提出了一种使用神经网络的生存分析模型,以及可伸缩优化算法。直接应用最大似然估计(MLE)缩短数据的一个关键技术挑战是评估目标函数及其梯度相对于模型参数需要计算积分。为了解决这一挑战,我们认识到,可以将用于审查数据的MEE视为差分方程约束优化问题,这是一种新颖的视角。在此连接之后,我们通过普通微分方程模拟事件时间的分布,并利用有效的颂歌求解器并伴随敏感性分析来数值评估可能性和梯度。使用这种方法,我们能够1)提供广泛的连续时间存活分布,无需强大的结构假设,2)使用神经网络获得强大的特征表示,3)允许在大规模应用中使用模型估计模型随机梯度下降。通过仿真研究和现实世界数据示例,我们展示了所提出的方法与现有的最先进的深度学习生存分析模型相比的有效性。已在HTTPS://github.com/Jiaqima/soden公开提供拟议的SODEN方法。
translated by 谷歌翻译
机器学习在医疗保健中的应用通常需要处理时间到事实的预测任务,包括不良事件的预测,重新住院或死亡。由于失去随访,此类结果通常受到审查。标准的机器学习方法不能直接地应用于具有审查结果的数据集。在本文中,我们提出了Auton-Survival,这是一个开源存储库,用于简化审查的活动时间或生存数据的工具。Auton Survival包括用于生存回归的工具,存在域移位,反事实估计,风险分层的表型,评估以及治疗效果的估计。通过采用大量SEER肿瘤学发病率数据的现实世界案例研究,我们证明了Auton Survival迅速支持数据科学家在回答复杂健康和流行病学问题方面的能力。
translated by 谷歌翻译
生存分析是事实建模的艺术,在临床治疗决策中起着重要作用。最近,已经提出了由神经ODE建立的连续时间模型进行生存分析。然而,由于神经ODE求解器的计算复杂性很高,神经ODE的训练很慢。在这里,我们提出了一种有效的替代方案,用于柔性连续时间模型,称为生存混合物密度网络(生存MDN)。生存MDN适用于混合密度网络(MDN)的输出的可逆阳性功能。尽管MDN产生灵活的实价分布,但可逆正函数将模型映射到时间域,同时保留可拖动密度。使用四个数据集,我们表明生存MDN的性能优于或类似于一致性的连续和离散时间基准,集成的brier得分和集成的二项式对数可能性。同时,生存MDN的速度也比基于ODE的模型和离散模型中规避的分类问题快。
translated by 谷歌翻译
Real-time individual endpoint prediction has always been a challenging task but of great clinic utility for both patients and healthcare providers. With 6,879 chronic kidney disease stage 4 (CKD4) patients as a use case, we explored the feasibility and performance of gated recurrent units with decay that models Weibull probability density function (GRU-D-Weibull) as a semi-parametric longitudinal model for real-time individual endpoint prediction. GRU-D-Weibull has a maximum C-index of 0.77 at 4.3 years of follow-up, compared to 0.68 achieved by competing models. The L1-loss of GRU-D-Weibull is ~66% of XGB(AFT), ~60% of MTLR, and ~30% of AFT model at CKD4 index date. The average absolute L1-loss of GRU-D-Weibull is around one year, with a minimum of 40% Parkes serious error after index date. GRU-D-Weibull is not calibrated and significantly underestimates true survival probability. Feature importance tests indicate blood pressure becomes increasingly important during follow-up, while eGFR and blood albumin are less important. Most continuous features have non-linear/parabola impact on predicted survival time, and the results are generally consistent with existing knowledge. GRU-D-Weibull as a semi-parametric temporal model shows advantages in built-in parameterization of missing, native support for asynchronously arrived measurement, capability of output both probability and point estimates at arbitrary time point for arbitrary prediction horizon, improved discrimination and point estimate accuracy after incorporating newly arrived data. Further research on its performance with more comprehensive input features, in-process or post-process calibration are warranted to benefit CKD4 or alike terminally-ill patients.
translated by 谷歌翻译
针对组织病理学图像数据的临床决策支持主要侧重于强烈监督的注释,这提供了直观的解释性,但受专业表现的束缚。在这里,我们提出了一种可解释的癌症复发预测网络(Ecarenet),并表明没有强注释的端到端学习提供最先进的性能,而可以通过注意机制包括可解释性。在前列腺癌生存预测的用例上,使用14,479个图像和仅复发时间作为注释,我们在验证集中达到0.78的累积动态AUC,与专家病理学家(以及在单独测试中的AUC为0.77放)。我们的模型是良好的校准,输出生存曲线以及每位患者的风险分数和群体。利用多实例学习层的注意重量,我们表明恶性斑块对预测的影响较高,从而提供了对预测的直观解释。我们的代码可在www.github.com/imsb-uke/ecarenet上获得。
translated by 谷歌翻译
机器学习渗透到许多行业,这为公司带来了新的利益来源。然而,在人寿保险行业中,机器学习在实践中并未被广泛使用,因为在过去几年中,统计模型表明了它们的风险评估效率。因此,保险公司可能面临评估人工智能价值的困难。随着时间的流逝,专注于人寿保险行业的修改突出了将机器学习用于保险公司的利益以及通过释放数据价值带来的利益。本文回顾了传统的生存建模方法论,并通过机器学习技术扩展了它们。它指出了与常规机器学习模型的差异,并强调了特定实现在与机器学习模型家族中面对审查数据的重要性。在本文的补充中,已经开发了Python库。已经调整了不同的开源机器学习算法,以适应人寿保险数据的特殊性,即检查和截断。此类模型可以轻松地从该SCOR库中应用,以准确地模拟人寿保险风险。
translated by 谷歌翻译
神经网络中的大多数工作都集中在给定一组协变量的情况下估计连续响应变量的条件平均值。在本文中,我们考虑使用神经网络估算有条件的分布函数,以审查和未经审查的数据。该算法建立在与时间依赖性协变量有关COX回归的数据结构上。在不施加任何模型假设的情况下,我们考虑了基于条件危险函数是唯一未知的非参数参数的损失函数,可以应用不明显的优化方法。通过仿真研究,我们显示了所提出的方法具有理想的性能,而部分可能性方法和传统的神经网络具有$ l_2 $损失产量的偏向估计,当模型假设违反。我们进一步用几个现实世界数据集说明了提出的方法。提出的方法的实现可在https://github.com/bingqing0729/nncde上获得。
translated by 谷歌翻译
有效的决策需要了解预测中固有的不确定性。在回归中,这种不确定性可以通过各种方法估算;然而,许多这些方法对调谐进行费力,产生过度自确性的不确定性间隔,或缺乏敏锐度(给予不精确的间隔)。我们通过提出一种通过定义具有两个不同损失功能的神经网络来捕获回归中的预测分布的新方法来解决这些挑战。具体地,一个网络近似于累积分布函数,第二网络近似于其逆。我们将此方法称为合作网络(CN)。理论分析表明,优化的固定点处于理想化的解决方案,并且该方法是渐近的与地面真理分布一致。凭经验,学习是简单且强大的。我们基准CN对两个合成和六个现实世界数据集的几种常见方法,包括预测来自电子健康记录的糖尿病患者的A1C值,其中不确定是至关重要的。在合成数据中,所提出的方法与基本上匹配地面真理。在真实世界数据集中,CN提高了许多性能度量的结果,包括对数似然估计,平均误差,覆盖估计和预测间隔宽度。
translated by 谷歌翻译
观察生存数据的因果结构提供了关于协变量和事件时间之间关系的重要信息。我们从信息理论源编码参数中获得动机,并且如果采用合适的源编码器,则显示结合所指示的非循环图(DAG)的知识可以是有益的。作为在此上下文中的可能的源编码器中,我们推导出基于变分推理的条件变分性Autiachiater用于因果结构化生存预测,我们将其称为Dagsurv。我们说明了Dagsurv在低和高维合成数据集中的性能,以及诸如元数据集等现实数据集,如元数据集。我们证明,该方法优于其他生存分析基线,如Cox比例危害,Deepsurv和Deephit,这对数据实体之间的潜在因果关系感到遗憾。
translated by 谷歌翻译
我们为身体和生存期的个体老化轨迹建立了一个计算模型,其中包含物理,功能和生物变量,并在人口统计学,生活方式和医学背景信息上进行调节。我们将现代机器学习技术与可解释的交互网络相结合,其中健康变量通过随机动力系统内的显式配对交互来耦合。我们的动态联合可解释网络(DJIN)模型可扩展到大型纵向数据集,是从基线健康状态的个体高维氏体健康轨迹和生存的预测性,并且在卫生变量之间的可解释网络的可解释网络。该网络识别健康变量之间的合理生理连接以及强烈连接的健康变量的集群。我们使用对老化(ELSA)数据的英语纵向研究培训我们的模型,并表明它比多个专用线性模型更好地进行健康结果和生存。我们将模型与灵活的低维潜空间模型进行比较,探讨准确模拟老化健康结果所需的维度。我们的Djin模型可用于生成易于历史的合成人员,以赋予缺失数据,并模拟未来的老化结果给出任意初始健康状态。
translated by 谷歌翻译
电子健康记录(EHR)系统以高频提供批判性,丰富和有价值的信息。EHR数据中最激动人心的应用之一正在开发具有来自生存分析的工具的实时死亡率警告系统。然而,最近使用的大多数生存分析方法基于使用静态协变量的(半)参数模型。这些模型不会利用时变EHR数据传达的信息。在这项工作中,我们展示了一种高度可扩展的生存分析方法,Boxhed 2.0基于模拟IV数据集的实时ICU死亡警告指示。重要的是,Boxhed可以以完全非参数的方式结合时间依赖的协变量,并通过理论来支持。我们的ICU死亡率模型实现了0.41和AUC-ROC的AUC-PRC为0.83的样品,展示了实时监测的好处。
translated by 谷歌翻译
估算干预措施对患者结果的影响是个性化医学的关键方面之一。他们的推断经常受到训练数据仅包括给药治疗的结果,而不是用于替代治疗(所谓的反事实结果)。基于观察数据的这种情况,即〜对于连续和二进制结果变量,不适用干预的数据,建议了几种方法。然而,患者结果通常以时间对次的数据记录,如果在观察期内未发生事件,则包括右审查的事件时间。尽管他们的重要性巨大,时间令人难度的数据很少用于治疗优化。我们建议一种名为Bites的方法(用于存活数据的平衡个体治疗效果),其将特定的半导体Cox损耗与治疗平衡的深神经网络相结合;即,我们使用积分概率度量(IPM)正常化治疗和未治疗的患者之间的差异。我们在仿真研究中展示了这种方法优于现有技术。此外,我们在应用于乳腺癌患者队列的应用中证明可以基于六个常规参数进行激素治疗。我们成功验证了独立的队列中的这一发现。提供叮咬作为易于使用的Python实现。
translated by 谷歌翻译
Prognostication for lung cancer, a leading cause of mortality, remains a complex task, as it needs to quantify the associations of risk factors and health events spanning a patient's entire life. One challenge is that an individual's disease course involves non-terminal (e.g., disease progression) and terminal (e.g., death) events, which form semi-competing relationships. Our motivation comes from the Boston Lung Cancer Study, a large lung cancer survival cohort, which investigates how risk factors influence a patient's disease trajectory. Following developments in the prediction of time-to-event outcomes with neural networks, deep learning has become a focal area for the development of risk prediction methods in survival analysis. However, limited work has been done to predict multi-state or semi-competing risk outcomes, where a patient may experience adverse events such as disease progression prior to death. We propose a novel neural expectation-maximization algorithm to bridge the gap between classical statistical approaches and machine learning. Our algorithm enables estimation of the non-parametric baseline hazards of each state transition, risk functions of predictors, and the degree of dependence among different transitions, via a multi-task deep neural network with transition-specific sub-architectures. We apply our method to the Boston Lung Cancer Study and investigate the impact of clinical and genetic predictors on disease progression and mortality.
translated by 谷歌翻译
内核生存分析模型借助内核函数估计了个体生存分布,该分布衡量了任意两个数据点之间的相似性。可以使用深内核存活模型来学习这种内核函数。在本文中,我们提出了一种名为“生存内核”的新的深内核生存模型,该模型以模型解释和理论分析的方式将大型数据集扩展到大型数据集。具体而言,根据最近开发的训练集压缩方案,用于分类和回归,将培训数据分为簇,称为内核网,我们将其扩展到生存分析设置。在测试时间,每个数据点表示为这些簇的加权组合,每个数据点可以可视化。对于生存核的特殊情况,我们在预测的生存分布上建立了有限样本误差,该误差是最佳的,该误差是最佳的。尽管使用上述内核网络压缩策略可以实现测试时间的可伸缩性,但训练过程中的可伸缩性是通过基于XGBoost(例如Xgboost)的暖启动程序和加速神经建筑搜索的启发式方法来实现的。在三个不同大小的标准生存分析数据集(大约300万个数据点)上,我们表明生存核具有很高的竞争力,并且在一致性指数方面经过测试的最佳基线。我们的代码可在以下网址找到:https://github.com/georgehc/survival-kernets
translated by 谷歌翻译
最近的研究表明,神经网络有可能改善经典生存模型,例如COX模型,Cox模型广泛用于临床实践。但是,神经网络通常依赖于中心可用的数据,而医疗保健数据经常在安全筒仓中保存。我们提出了一个联合的COX模型,该模型可容纳此数据设置并放松比例危害假设,从而允许时间变化的协变量效应。在后一方面,我们的模型不需要明确的时间变化效果,而与以前的工作相比降低了前期组织成本。我们尝试使用公开可用的临床数据集,并证明联合模型能够像标准模型一样执行。
translated by 谷歌翻译
在医学中,生存分析研究了感兴趣的事件的持续时间,例如死亡率。一个主要挑战是如何处理多个竞争事件(例如,多种疾病诊断)。在这项工作中,我们提出了一个基于变压器的模型,该模型不会为基础生存分布做出假设,并且能够处理竞争事件,即生存。我们在多事件场景中的观测环境中解释了隐式\ emph {混杂因素},这会导致选择偏见,因为预测的生存概率受到无关因素的影响。为了充分利用生存数据从头开始训练变压器,为多任务学习设计了多个辅助任务。因此,该模型从所有这些任务中学习了强有力的共享表示形式,进而为更好的生存分析提供服务。我们进一步演示了如何通过可解释的Survtrace的可解释的注意力机制来检查协变量和重要性,这足以增强临床试验设计和新的治疗开发。与470K患者的代理,支持和SEER数据进行的实验验证了我们方法的全方位优势。
translated by 谷歌翻译