因果推理的现有机器学习方法通​​常通过潜在结果平均值(例如平均治疗效应)估计数量。但是,此类数量不会捕获有关潜在结果分布的完整信息。在这项工作中,我们估计了观察数据干预后潜在结果的密度。具体而言,我们为此目的提出了一种新颖的,全参数的深度学习方法,称为介入归一化流。我们的介入归一化流提供了正确归一化的密度估计器。为此,我们介绍了两个正常流的迭代培训,即(i)教师流以估计令人讨厌的参数,以及(ii)学生流量,用于参数估计潜在结果的密度。为了对学生流参数的有效且双重稳定的估计,我们基于一步偏置校正开发了一个自定义的可拖动优化目标。在各种实验中,我们证明了我们的干预归一化流具有表达性和高效,并且可以很好地扩展样本量和高维混杂。据我们所知,我们的介入归一化流是第一种完全参数的深度学习方法,用于估计潜在结果。
translated by 谷歌翻译
There is intense interest in applying machine learning to problems of causal inference in fields such as healthcare, economics and education. In particular, individual-level causal inference has important applications such as precision medicine. We give a new theoretical analysis and family of algorithms for predicting individual treatment effect (ITE) from observational data, under the assumption known as strong ignorability. The algorithms learn a "balanced" representation such that the induced treated and control distributions look similar. We give a novel, simple and intuitive generalization-error bound showing that the expected ITE estimation error of a representation is bounded by a sum of the standard generalization-error of that representation and the distance between the treated and control distributions induced by the representation. We use Integral Probability Metrics to measure distances between distributions, deriving explicit bounds for the Wasserstein and Maximum Mean Discrepancy (MMD) distances. Experiments on real and simulated data show the new algorithms match or outperform the state-of-the-art.
translated by 谷歌翻译
传统的因果推理方法利用观察性研究数据来估计潜在治疗的观察到的差异和未观察到的结果,称为条件平均治疗效果(CATE)。然而,凯特就对应于仅第一刻的比较,因此可能不足以反映治疗效果的全部情况。作为替代方案,估计全部潜在结果分布可以提供更多的见解。但是,估计治疗效果的现有方法潜在的结果分布通常对这些分布施加限制性或简单的假设。在这里,我们提出了合作因果网络(CCN),这是一种新颖的方法,它通过学习全部潜在结果分布而超出了CATE的估计。通过CCN框架估算结果分布不需要对基础数据生成过程的限制性假设。此外,CCN促进了每种可能处理的效用的估计,并允许通过效用函数进行特定的特定变异。 CCN不仅将结果估计扩展到传统的风险差异之外,而且还可以通过定义灵活的比较来实现更全面的决策过程。根据因果文献中通常做出的假设,我们表明CCN学习了渐近捕获真正潜在结果分布的分布。此外,我们提出了一种调整方法,该方法在经验上可以有效地减轻观察数据中治疗组之间的样本失衡。最后,我们评估了CCN在多个合成和半合成实验中的性能。我们证明,与现有的贝叶斯和深层生成方法相比,CCN学会了改进的分布估计值,以及对各种效用功能的改进决策。
translated by 谷歌翻译
通常使用参数模型进行经验领域的参数估计,并且此类模型很容易促进统计推断。不幸的是,它们不太可能足够灵活,无法充分建模现实现象,并可能产生偏见的估计。相反,非参数方法是灵活的,但不容易促进统计推断,并且仍然可能表现出残留的偏见。我们探索了影响功能(IFS)的潜力(a)改善初始估计器而无需更多数据(b)增加模型的鲁棒性和(c)促进统计推断。我们首先对IFS进行广泛的介绍,并提出了一种神经网络方法“ Multinet”,该方法使用单个体系结构寻求合奏的多样性。我们还介绍了我们称为“ Multistep”的IF更新步骤的变体,并对不同方法提供了全面的评估。发现这些改进是依赖数据集的,这表明所使用的方法与数据生成过程的性质之间存在相互作用。我们的实验强调了从业人员需要通过不同的估计器组合进行多次分析来检查其发现的一致性。我们还表明,可以改善“自由”的现有神经网络,而无需更多数据,而无需重新训练。
translated by 谷歌翻译
观察数据中估算单个治疗效果(ITE)在许多领域,例如个性化医学等领域。但是,实际上,治疗分配通常被未观察到的变量混淆,因此引入了偏见。消除偏见的一种补救措施是使用仪器变量(IVS)。此类环境在医学中广泛存在(例如,将合规性用作二进制IV的试验)。在本文中,我们提出了一个新颖的,可靠的机器学习框架,称为MRIV,用于使用二进制IV估算ITES,从而产生无偏见的ITE估计器。与以前的二进制IV的工作不同,我们的框架通过伪结果回归直接估算了ITE。 (1)我们提供了一个理论分析,我们表明我们的框架产生了多重稳定的收敛速率:即使几个滋扰估计器的收敛缓慢,我们的ITE估计器也会达到快速收敛。 (2)我们进一步表明,我们的框架渐近地优于最先进的插件IV方法,以进行ITE估计。 (3)我们以理论结果为基础,并提出了一种使用二进制IVS的ITE估算的定制的,称为MRIV-NET的深度神经网络结构。在各种计算实验中,我们从经验上证明了我们的MRIV-NET实现最先进的性能。据我们所知,我们的MRIV是第一个机器学习框架,用于估算显示出倍增功能的二进制IV设置。
translated by 谷歌翻译
在广泛的任务中,在包括医疗处理,广告和营销和政策制定的发​​展中,对观测数据进行因果推断非常有用。使用观察数据进行因果推断有两种重大挑战:治疗分配异质性(\ Texit {IE},治疗和未经处理的群体之间的差异),并且没有反事实数据(\ TEXTIT {IE},不知道是什么已经发生了,如果确实得到治疗的人,反而尚未得到治疗)。通过组合结构化推论和有针对性的学习来解决这两个挑战。在结构方面,我们将联合分布分解为风险,混淆,仪器和杂项因素,以及在目标学习方面,我们应用来自影响曲线的规则器,以减少残余偏差。进行了一项消融研究,对基准数据集进行评估表明,TVAE具有竞争力和最先进的艺术表现。
translated by 谷歌翻译
大型观察数据越来越多地提供健康,经济和社会科学等学科,研究人员对因果问题而不是预测感兴趣。在本文中,从旨在调查参与学校膳食计划对健康指标的实证研究,研究了使用非参数回归的方法估算异质治疗效果的问题。首先,我们介绍了与观察或非完全随机数据进行因果推断相关的设置和相关的问题,以及如何在统计学习工具的帮助下解决这些问题。然后,我们审查并制定现有最先进的框架的统一分类,允许通过非参数回归模型来估算单个治疗效果。在介绍模型选择问题的简要概述后,我们说明了一些关于三种不同模拟研究的方法的性能。我们通过展示一些关于学校膳食计划数据的实证分析的一些方法的使用来结束。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, we cannot use the technique of cross-validation here as we do not observe the counterfactual potential outcome for any data point. Hence, we need to design model selection techniques that do not explicitly rely on counterfactual data. As an alternative to cross-validation, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models also estimated from the data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can observe the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. We evaluate 9 metrics on 144 datasets for selecting between 415 estimators per dataset, including datasets that closely mimic real-world datasets. Further, we use the latest techniques from AutoML to ensure consistent hyperparameter selection for nuisance models for a fair comparison across metrics.
translated by 谷歌翻译
Causal inference is the process of using assumptions, study designs, and estimation strategies to draw conclusions about the causal relationships between variables based on data. This allows researchers to better understand the underlying mechanisms at work in complex systems and make more informed decisions. In many settings, we may not fully observe all the confounders that affect both the treatment and outcome variables, complicating the estimation of causal effects. To address this problem, a growing literature in both causal inference and machine learning proposes to use Instrumental Variables (IV). This paper serves as the first effort to systematically and comprehensively introduce and discuss the IV methods and their applications in both causal inference and machine learning. First, we provide the formal definition of IVs and discuss the identification problem of IV regression methods under different assumptions. Second, we categorize the existing work on IV methods into three streams according to the focus on the proposed methods, including two-stage least squares with IVs, control function with IVs, and evaluation of IVs. For each stream, we present both the classical causal inference methods, and recent developments in the machine learning literature. Then, we introduce a variety of applications of IV methods in real-world scenarios and provide a summary of the available datasets and algorithms. Finally, we summarize the literature, discuss the open problems and suggest promising future research directions for IV methods and their applications. We also develop a toolkit of IVs methods reviewed in this survey at https://github.com/causal-machine-learning-lab/mliv.
translated by 谷歌翻译
绘制因果推断的基本挑战是,任何单位都没有完全观察到反事实。此外,在观察性研究中,治疗分配可能会混淆。在不满足的条件下,已经出现了许多统计方法,这些方法在给定预处理的协变量下,包括基于倾向得分的方法,基于预后分数的方法和双重稳健方法。不幸的是,对于应用研究人员而言,没有“一定大小的”因果方法可以在普遍上表现出色。实际上,因果方法主要根据手工制作的模拟数据进行定量评估。这样的数据产生程序可能具有有限的价值,因为它们通常是现实的风格化模型。它们被简化为障碍性,缺乏现实世界数据的复杂性。对于应用研究人员,了解方法对手头数据的表现效果很好至关重要。我们的工作介绍了基于生成模型的深层框架,以验证因果推理方法。该框架的新颖性源于其产生锚定在观察到的样品的经验分布上的合成数据的能力,因此与后者几乎没有区别。该方法使用户可以为因果效应的形式和幅度指定地面真理,并将偏见作为协变量的功能。因此,模拟数据集用于评估与观察到的样本相似的数据时,各种因果估计方法的潜在性能。我们证明了Credence在广泛的仿真研究中准确评估因果估计技术的相对性能以及来自Lalonde和Project Star研究的两个现实世界数据应用的能力。
translated by 谷歌翻译
The intersection of causal inference and machine learning for decision-making is rapidly expanding, but the default decision criterion remains an \textit{average} of individual causal outcomes across a population. In practice, various operational restrictions ensure that a decision-maker's utility is not realized as an \textit{average} but rather as an \textit{output} of a downstream decision-making problem (such as matching, assignment, network flow, minimizing predictive risk). In this work, we develop a new framework for off-policy evaluation with \textit{policy-dependent} linear optimization responses: causal outcomes introduce stochasticity in objective function coefficients. Under this framework, a decision-maker's utility depends on the policy-dependent optimization, which introduces a fundamental challenge of \textit{optimization} bias even for the case of policy evaluation. We construct unbiased estimators for the policy-dependent estimand by a perturbation method, and discuss asymptotic variance properties for a set of adjusted plug-in estimators. Lastly, attaining unbiased policy evaluation allows for policy optimization: we provide a general algorithm for optimizing causal interventions. We corroborate our theoretical results with numerical simulations.
translated by 谷歌翻译
估算高维观测数据的个性化治疗效果在实验设计不可行,不道德或昂贵的情况下是必不可少的。现有方法依赖于拟合对治疗和控制人群的结果的深层模型。然而,当测量单独的结果是昂贵的时,就像肿瘤活检一样,需要一种用于获取每种结果的样本有效的策略。深度贝叶斯主动学习通过选择具有高不确定性的点来提供高效数据采集的框架。然而,现有方法偏置训练数据获取对处理和控制群体之间的非重叠支持区域。这些不是样本效率,因为在这些区域中不可识别治疗效果。我们介绍了因果关系,贝叶斯采集函数接地的信息理论,使数据采集朝向具有重叠支持的地区,以最大限度地提高学习个性化治疗效果的采样效率。我们展示了拟议的综合和半合成数据集IHDP和CMNIST上提出的收购策略及其扩展的表现,旨在模拟常见的数据集偏差和病理学。
translated by 谷歌翻译
感兴趣的许多因果和政策效应都是由高维或非参数回归函数的线性功能定义的。 $ \ sqrt {n} $ - 对目标对象的一致且渐近地正常估计需要偏见,以减少正则化和/或模型选择对感兴趣对象的影响。通常,通过将校正项添加到功能的插件估计器中来实现,从而导致属性,例如半参数效率,双重鲁棒性和Neyman正交性。我们基于自动学习使用神经网和随机森林的Riesz表示的自动偏差程序。我们的方法仅依赖于黑框评估Oracle访问线性功能,并且不需要其分析形式的知识。我们提出了一种多任务神经网络偏见方法,具有随机梯度下降最小化的Riesz代表和回归损失,同时共享这两个函数的表示层。我们还提出了一种随机森林方法,该方法了解Riesz函数的局部线性表示。即使我们的方法适用于任意功能,我们在实验上发现它的性能与Shi等人的最先进的神经网状算法相比。 (2019)对于平均治疗效果功能的情况。我们还使用汽油需求的汽油价格变化的半合成数据来评估我们的方法,即通过连续处理估算平均边缘效应的问题。
translated by 谷歌翻译
由于选择偏差,观察数据估算平均治疗效果(ATE)是有挑战性的。现有作品主要以两种方式应对这一挑战。一些研究人员建议构建满足正交条件的分数函数,该函数确保已建立的估计量“正交”更加健壮。其他人探索表示模型,以实现治疗组和受控群体之间的平衡表示。但是,现有研究未能进行1)在表示空间中歧视受控单元以避免过度平衡的问题; 2)充分利用“正交信息”。在本文中,我们提出了一个基于最新协变量平衡表示方法和正交机器学习理论的中等平衡的表示学习(MBRL)框架。该框架可保护表示形式免于通过多任务学习过度平衡。同时,MBRL将噪声正交性信息纳入培训和验证阶段,以实现更好的ATE估计。与现有的最新方法相比,基准和模拟数据集的全面实验表明,我们方法对治疗效应估计的优越性和鲁棒性。
translated by 谷歌翻译
因果推断是在采用干预时估计因果关系中的因果效应。确切地说,在具有二进制干预措施的因果模型中,即控制和治疗,因果效应仅仅是事实和反事实之间的差异。困难是必须估算反事实,因此因果效应只能是估计。估计反事实的主要挑战是确定影响结果和治疗的混杂因素。一种典型的方法是将因果推论作为监督学习问题,因此可以预测反事实。包括线性回归和深度学习模型,最近的机器学习方法已适应因果推断。在本文中,我们提出了一种通过使用变分信息瓶颈(CEVIB)来估计因果效应的方法。有希望的点是,VIB能够自然地将变量从数据中蒸馏出来,从而可以通过使用观察数据来估计因果效应。我们通过将CEVIB应用于三个数据集,表明我们的方法实现了最佳性能,将其应用于其他方法。我们还实验表明了我们方法的鲁棒性。
translated by 谷歌翻译
估算观察数据的个性化治疗效果(ITES)对于决策至关重要。为了获得非偏见的ITE估计,常见的假设是所有混杂因素都被观察到。然而,在实践中,我们不太可能直接观察这些混乱。相反,我们经常遵守真正的混乱的噪音测量,这可以作为有效代理。在本文中,我们解决了在观察嘈杂的代理而不是真正的混乱中估算ITE的问题。为此,我们开发了一种Deconfound Temporal AutoEncoder,这是一种利用观察到嘈杂的代理来学习反映真正隐藏的混淆的隐藏嵌入的新方法。特别地,DTA将长短期存储器自动统计器组合出具有因果正则化惩罚,该惩罚使得有条件独立于所学习的隐藏嵌入的潜在结果和治疗分配。通过DTA学习隐藏的嵌入后,最先进的结果模型可用于控制它并获得ITE的无偏见估计。使用综合性和现实世界的医疗数据,我们通过通过大幅保证金改善最先进的基准来证明我们的DTA的有效性。
translated by 谷歌翻译
对于许多具有观察数据的生物医学应用,估计治疗效果至关重要。特别是,对于许多生物医学研究人员来说,可解释性可解释性。在本文中,我们首先提供理论分析,并在强大的无知性假设下获得平均治疗效果(ATE)估计的偏差的上限。通过利用加权能量距离的吸引力性能得出,我们的上限比文献中报道的更紧密。在理论分析的激励下,我们提出了一个新的目标函数,用于估计使用能量距离平衡评分的ATE,因此不需要正确规范倾向得分模型。我们还利用最近开发的神经添加剂模型来改善用于潜在结果预测的深度学习模型的可解释性。我们通过能量距离平衡评分加权正则化进一步增强了我们提出的模型。在半合成实验中,使用两个基准数据集(即IHDP和ACIC)证明了我们提出的模型比当前最新方法的优势。
translated by 谷歌翻译
Off-Policy evaluation (OPE) is concerned with evaluating a new target policy using offline data generated by a potentially different behavior policy. It is critical in a number of sequential decision making problems ranging from healthcare to technology industries. Most of the work in existing literature is focused on evaluating the mean outcome of a given policy, and ignores the variability of the outcome. However, in a variety of applications, criteria other than the mean may be more sensible. For example, when the reward distribution is skewed and asymmetric, quantile-based metrics are often preferred for their robustness. In this paper, we propose a doubly-robust inference procedure for quantile OPE in sequential decision making and study its asymptotic properties. In particular, we propose utilizing state-of-the-art deep conditional generative learning methods to handle parameter-dependent nuisance function estimation. We demonstrate the advantages of this proposed estimator through both simulations and a real-world dataset from a short-video platform. In particular, we find that our proposed estimator outperforms classical OPE estimators for the mean in settings with heavy-tailed reward distributions.
translated by 谷歌翻译
Causal learning has attracted much attention in recent years because causality reveals the essential relationship between things and indicates how the world progresses. However, there are many problems and bottlenecks in traditional causal learning methods, such as high-dimensional unstructured variables, combinatorial optimization problems, unknown intervention, unobserved confounders, selection bias and estimation bias. Deep causal learning, that is, causal learning based on deep neural networks, brings new insights for addressing these problems. While many deep learning-based causal discovery and causal inference methods have been proposed, there is a lack of reviews exploring the internal mechanism of deep learning to improve causal learning. In this article, we comprehensively review how deep learning can contribute to causal learning by addressing conventional challenges from three aspects: representation, discovery, and inference. We point out that deep causal learning is important for the theoretical extension and application expansion of causal science and is also an indispensable part of general artificial intelligence. We conclude the article with a summary of open issues and potential directions for future work.
translated by 谷歌翻译