Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements. The quantum computation time scales linearly with dataset size and quadratic for classical post-processing. While our method scales in general exponentially in qubit number, we gain a substantial speed-up when running on intermediate-sized quantum computers. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. Our approach is robust to noise via a cost-free error mitigation scheme. We demonstrate the advantages of our methods for noisy quantum computers by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our method enables benchmarking of quantum machine learning algorithms with large datasets on currently available quantum computers.
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
量子机学习(QML)中的内核方法最近引起了人们的重大关注,作为在数据分析中获得量子优势的潜在候选者。在其他有吸引力的属性中,当训练基于内核的模型时,可以保证由于训练格局的凸度而找到最佳模型的参数。但是,这是基于以下假设:量子内核可以从量子硬件有效获得。在这项工作中,我们从准确估计内核值所需的资源的角度研究了量子内核的训练性。我们表明,在某些条件下,可以将量子内核在不同输入数据上的值呈指数浓缩(在量子数中)指向一些固定值,从而导致成功训练所需的测量数量的指数缩放。我们确定了可以导致集中度的四个来源,包括:数据嵌入,全球测量,纠缠和噪声的表达性。对于每个来源,分析得出量子内核的相关浓度结合。最后,我们表明,在处理经典数据时,训练用内核比对方法嵌入的参数化数据也容易受到指数浓度的影响。我们的结果通过数值仿真来验证几个QML任务。总体而言,我们提供指南,表明应避免某些功能,以确保量子内核方法的有效评估和训练性。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
Quantum Kernel方法是量子机器学习的关键方法之一,这具有不需要优化的优点,并且具有理论简单。凭借这些属性,到目前为止已经开发了几种实验演示和对潜在优势的讨论。但是,正如古典机器学习所在的情况一样,并非所有量子机器学习模型都可以被视为内核方法。在这项工作中,我们探讨了具有深层参数化量子电路的量子机器学习模型,旨在超出传统量子核法。在这种情况下,预计表示功率和性能将得到增强,而培训过程可能是丢储Plateaus问题的瓶颈。然而,我们发现,在训练期间,深度足够的量子电路的参数不会从其初始值中移动到初始值,从而允许一阶扩展参数。这种行为类似于经典文献中的神经切线内核,并且可以通过另一个紧急内核,量子切线内核来描述这种深度变化量子机器学习。数值模拟表明,所提出的Quantum切线内核优于传统的Quantum核心核对ANSATZ生成的数据集。该工作提供了超出传统量子内核法的新方向,并探讨了用深层参数化量子电路的量子机器学习的潜在力量。
translated by 谷歌翻译
数据装配过程是量子机学习的瓶颈之一,可能会否定任何量子加速。鉴于此,必须采用更有效的数据编码策略。我们提出了一种基于光子的骨气数据编码方案,该方案使用较少的编码层嵌入经典数据点,并通过将数据点映射到高维FOCK空间中,从而规避非线性光学组件的需求。电路的表达能力可以通过输入光子的数量来控制。我们的工作阐明了量子光子学在量子机学习模型的表达能力方面提供的独特优势。通过利用光子数依赖的表达能力,我们提出了三种不同的中间尺度量子兼容二进制分类方法,其所需资源适用于不同监督分类任务。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
量子技术有可能彻底改变我们如何获取和处理实验数据以了解物理世界。一种实验设置,将来自物理系统的数据转换为稳定的量子存储器,以及使用量子计算机的数据的处理可以具有显着的优点,这些实验可以具有测量物理系统的传统实验,并且使用经典计算机处理结果。我们证明,在各种任务中,量子机器可以从指数较少的实验中学习而不是传统实验所需的实验。指数优势在预测物理系统的预测属性中,对噪声状态进行量子主成分分析,以及学习物理动态的近似模型。在一些任务中,实现指数优势所需的量子处理可能是适度的;例如,可以通过仅处理系统的两个副本来同时了解许多非信息可观察。我们表明,可以使用当今相对嘈杂的量子处理器实现大量超导QUBITS和1300个量子门的实验。我们的结果突出了量子技术如何能够实现强大的新策略来了解自然。
translated by 谷歌翻译
量子机学习(QML)是使用量子计算来计算机器学习算法的使用。随着经典数据的普遍性和重要性,需要采用QML的混合量子古典方法。参数化的量子电路(PQC),特别是量子内核PQC,通常用于QML的混合方法中。在本文中,我们讨论了PQC的一些重要方面,其中包括PQC,量子内核,具有量子优势的量子内核以及量子核的训练性。我们得出的结论是,具有混合核方法的量子核,也就是量子核方法,具有明显的优势作为QML的混合方法。它们不仅适用于嘈杂的中间量子量子(NISQ)设备,而且还可以用于解决所有类型的机器学习问题,包括回归,分类,聚类和降低尺寸。此外,除了量子效用之外,如果量子内核(即量子特征编码)在经典上是棘手的,则可以获得量子优势。
translated by 谷歌翻译
在当前的嘈杂中间尺度量子(NISQ)时代,量子机学习正在成为基于程序门的量子计算机的主要范式。在量子机学习中,对量子电路的门进行了参数化,并且参数是根据数据和电路输出的测量来通过经典优化来调整的。参数化的量子电路(PQC)可以有效地解决组合优化问题,实施概率生成模型并进行推理(分类和回归)。该专着为具有概率和线性代数背景的工程师的观众提供了量子机学习的独立介绍。它首先描述了描述量子操作和测量所必需的必要背景,概念和工具。然后,它涵盖了参数化的量子电路,变异量子本质层以及无监督和监督的量子机学习公式。
translated by 谷歌翻译
量子内核方法被认为是将量子计算机应用于机器学习问题的承诺大道。但是,最近的结果在确定机器学习方法的性能方面忽略了核心角色超级参数。在这项工作中,我们显示了如何优化量子内核的带宽可以从随机猜测提高内核方法的性能,以与最佳经典方法竞争。没有乘语优化,内核值随着Qubit计数呈指数级增长,这是最近观察结果的原因,即Quantum核心方法的性能随着量程计数而减小。我们通过使用多个量子内核和经典数据集的广泛数值实验来重现这些负面结果并显示,如果核心带宽被优化,则随着Qubit计数的增长而改善了性能。我们在古典和量子内核的带宽之间绘制了连接,并在这两种情况下显示了类似的行为。
translated by 谷歌翻译
高品质,大型数据集在古典机器学习的发展和成功中发挥了至关重要的作用。量子机器学习(QML)是一个新的领域,旨在使用量子计算机进行数据分析,希望获得某种量子的量子优势。虽然大多数提议的QML架构是使用经典数据集的基准测试,但仍存在古典数据集上的QML是否会实现这样的优势。在这项工作中,我们争辩说,应该使用由量子状态组成的量子数据集。为此目的,我们介绍了由量子状态组成的Ntangled DataSet,其数量和多分纠缠的类型。我们首先展示如何培训量子神经网络,以在Ntangled DataSet中生成状态。然后,我们使用Ntangled DataSet来获得用于监督学习分类任务的基准测试QML模型。我们还考虑一个基于替代的纠缠基数据集,其是可扩展的,并且由量子电路准备的状态与不同深度的状态组成。作为我们的结果的副产品,我们介绍了一种用于产生多重石纠缠态的新方法,为量子纠缠理论提供量子神经网络的用例。
translated by 谷歌翻译
量子计算为某些问题提供了指数加速的潜力。但是,许多具有可证明加速的现有算法都需要当前不可用的耐故障量子计算机。我们提出了NISQ-TDA,这是第一个完全实现的量子机学习算法,其在任意经典(非手动)数据上具有可证明的指数加速,并且仅需要线性电路深度。我们报告了我们的NISQ-TDA算法的成功执行,该算法应用于在量子计算设备以及嘈杂的量子模拟器上运行的小数据集。我们从经验上证实,该算法对噪声是可靠的,并提供了目标深度和噪声水平,以实现现实世界中问题的近期,无耐受耐受性的量子优势。我们独特的数据加载投影方法是噪声鲁棒性的主要来源,引入了一种新的自我校正数据加载方法。
translated by 谷歌翻译
在量子通道歧视的问题中,人们区分给定数量的量子通道,这是通过通过通道发送输入状态并测量输出状态来完成的。这项工作研究了跨量子电路和机器学习技术的应用,用于区分此类渠道。特别是,我们探讨了(i)将此任务嵌入到变化量子计算的框架中的实际实施,(ii)培训基于变异量子电路的量子分类器,以及(iii)应用量子核估计技术。为了测试这三种通道歧视方法,我们考虑了两种不同的去极化因子的一对纠缠破裂的通道和去极化通道。对于方法(i),我们使用广泛讨论的平行和顺序策略来解决解决量子通道歧视问题。我们在更好地收敛与量量较少的量子资源方面展示了后者的优势。具有变分量子分类器(II)的量子通道歧视即使使用随机和混合输入状态以及简单的变异电路也可以运行。基于内核的分类方法(III)也被发现有效,因为它允许人们区分不仅与去极化因子的固定值相关的去极化通道,而是与其范围相关的。此外,我们发现对一种常用核之一的简单修改显着提高了该方法的效率。最后,我们的数值发现表明,通道歧视的变分方法的性能取决于输出态乘积的痕迹。这些发现表明,量子机学习可用于区分通道,例如代表物理噪声过程的通道。
translated by 谷歌翻译
已知量子计算机可以在某些专业设置中使用经典的最先进的机器学习方法提供加速。例如,已证明量子内核方法可以在离散对数问题的学习版本上提供指数加速。了解量子模型的概括对于实现实际利益问题的类似加速至关重要。最近的结果表明,量子特征空间的指数大小阻碍了概括。尽管这些结果表明,量子模型在量子数数量较大时无法概括,但在本文中,我们表明这些结果依赖于过度限制性的假设。我们通过改变称为量子内核带宽的超参数来考虑更广泛的模型。我们分析了大量限制,并为可以以封闭形式求解的量子模型的概括提供了明确的公式。具体而言,我们表明,更改带宽的值可以使模型从不能概括到任何目标函数到对准目标的良好概括。我们的分析表明,带宽如何控制内核积分操作员的光谱,从而如何控制模型的电感偏置。我们从经验上证明,我们的理论正确地预测带宽如何影响质量模型在具有挑战性的数据集上的概括,包括远远超出我们理论假设的数据集。我们讨论了结果对机器学习中量子优势的含义。
translated by 谷歌翻译
量子机学习(QML)模型旨在从量子状态中编码的数据中学习。最近,已经表明,几乎没有归纳偏差的模型(即,对模型中嵌入的问题没有假设)可能存在训练性和概括性问题,尤其是对于大问题。因此,开发编码与当前问题有关的信息的方案是至关重要的。在这项工作中,我们提出了一个简单但功能强大的框架,其中数据中的基本不向导用于构建QML模型,该模型通过构造尊重这些对称性。这些所谓的组不变模型产生的输出在对称组$ \ mathfrak {g} $的任何元素的动作下保持不变。我们提出了理论结果,基于$ \ mathfrak {g} $ - 不变型模型的设计,并通过几个范式QML分类任务来体现其应用程序,包括$ \ mathfrak {g} $是一个连续的谎言组,也是一个lie group,也是一个。离散对称组。值得注意的是,我们的框架使我们能够以一种优雅的方式恢复文献的几种知名算法,并发现了新的算法。综上所述,我们期望我们的结果将有助于为QML模型设计采用更多几何和群体理论方法铺平道路。
translated by 谷歌翻译
由于它们的多功能性,机器学习算法表现出识别许多不同数据集中的模式。然而,随着数据集的大小增加,培训和使用这些统计模型的计算时间很快地增长。Quantum Computing提供了一种新的范例,可以克服这些计算困难的能力。这里,我们将量子类似物提出到K-means聚类,在模拟超导Qubits上实现它,并将其与先前显影的量子支持向量机进行比较。我们发现算法可与群集和分类问题的古典K均值算法相当的算法,发现它具有渐近复杂度$ O(n ^ {3/2} k ^ {1/2} \ log {p})$如果$ n $是数据点数,$ k $是群集的数量,$ p $是数据点的尺寸,在经典模拟中提供了重大的加速。
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译