由于它们的多功能性,机器学习算法表现出识别许多不同数据集中的模式。然而,随着数据集的大小增加,培训和使用这些统计模型的计算时间很快地增长。Quantum Computing提供了一种新的范例,可以克服这些计算困难的能力。这里,我们将量子类似物提出到K-means聚类,在模拟超导Qubits上实现它,并将其与先前显影的量子支持向量机进行比较。我们发现算法可与群集和分类问题的古典K均值算法相当的算法,发现它具有渐近复杂度$ O(n ^ {3/2} k ^ {1/2} \ log {p})$如果$ n $是数据点数,$ k $是群集的数量,$ p $是数据点的尺寸,在经典模拟中提供了重大的加速。
translated by 谷歌翻译
Quantum computing is a promising paradigm based on quantum theory for performing fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k-Means algorithms, exploiting different degree of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version, still obtaining comparable clustering results.
translated by 谷歌翻译
在这里,我们提出了一种基于变异量子电路聚类数据的量子算法。该算法允许将数据分类为许多群集,并且可以轻松地以几量噪声中间尺度量子(NISQ)设备实现。该算法的概念依赖于将聚类问题减少到优化,然后通过差异量子eigensolver(VQE)与非正交量子符号状态相结合。实际上,该方法使用目标希尔伯特空间的最大正交状态,而不是通常的计算基础,即使很少有Qubits,也可以考虑大量簇。我们使用实际数据集对数值模拟进行基准测试算法,即使有一个单个量子,也显示出出色的性能。此外,通过构造,量子化算法的张量网络模拟可以在当前经典硬件上运行的量子启发的聚类算法。
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements. The quantum computation time scales linearly with dataset size and quadratic for classical post-processing. While our method scales in general exponentially in qubit number, we gain a substantial speed-up when running on intermediate-sized quantum computers. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. Our approach is robust to noise via a cost-free error mitigation scheme. We demonstrate the advantages of our methods for noisy quantum computers by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our method enables benchmarking of quantum machine learning algorithms with large datasets on currently available quantum computers.
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
由于在执行基本线性代数子程序(BLAS)时,大多数ML算法中的基本元素,量子机学习(QML)算法在机器学习(ML)域中获得了很大的相关性。通过利用BLAS操作,我们提出,实现和分析了$ \ MATHCAL {O}(NKLOG(D)I / C)$的低时间复杂度,以将其应用于读出读数鉴别量子态的根本问题。辨别量子状态允许识别量子状态$ | 0 \ rangle $和$ | 1 \ rangle从低级同步和正交信号(IQ)数据,并且可以使用自定义ml模型来完成。为了减少经典计算机的依赖性,我们使用Qk-means在IBMQ波哥大设备上执行状态辨别,并设法查找高达98.7%的分配保真度,其仅低于K-Means算法的分配保真。从将算法应用于量子状态的组合产生的分配保真度评分显示了使用Pearson相关系数的相关性分析,其中证据显示(1,2)和(2,3)邻近Qubit耦合的跨谈分析的装置。
translated by 谷歌翻译
我们分析和分类从电影评论构建的文本数据的观点。为此,我们使用量子机学习算法的基于内核的方法。为了组合量子内核,我们使用使用不同Pauli旋转门组合构造的电路,其中旋转参数是从文本数据获得的数据点的经典非线性函数。为了分析提出的模型的性能,我们使用决策树,增强分类器以及经典和量子支持向量机分析量子模型。我们的结果表明,就所有评估指标而言,量子内核模型或量子支持向量机优于用于分析的所有其他算法。与经典的支持向量机相比,量子支持向量机也会带来明显更好的结果,即使功能数量增加或尺寸增加。结果清楚地表明,如果功能的数量为$ 15 $,则使用量子支持向量机使用量子支持向量机的精度分数提高了$ 9.4 \%$,而经典支持向量机则将其提高。
translated by 谷歌翻译
预计量子计算将提供巨大的计算能力,可以为许多数据科学问题提供有效的解决方案。但是,当前一代的量子设备很小且嘈杂,这使得处理与实际问题相关的大数据集变得困难。核心选择旨在通过减少输入数据的大小而不损害准确性来避免此问题。最近的工作表明,核心选择可以帮助实施量子K-均值聚类问题。但是,尚未探索核心选择对量子K-均值聚类性能的影响。在这项工作中,我们比较了两种核心技术(BFL16和Oneshot)的相对性能以及每种情况下的核心结构的大小,相对于各种数据集,并布局在实现量子算法中的核心选择的优势和局限性。我们还研究了去极化量子噪声和位叶片误差的影响,并实施了量子自动编码器技术以超过噪声效应。我们的工作为未来在近期量子设备上实施数据科学算法提供了有用的见解,这些量子设备通过核心选择减少了问题大小。
translated by 谷歌翻译
The basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely to efficiently perform computations in an intractably large Hilbert space. In this paper we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyse the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. This kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we can use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualise the working principle with 2-dimensional mini-benchmark datasets.
translated by 谷歌翻译
量子机学习(QML)是使用量子计算来计算机器学习算法的使用。随着经典数据的普遍性和重要性,需要采用QML的混合量子古典方法。参数化的量子电路(PQC),特别是量子内核PQC,通常用于QML的混合方法中。在本文中,我们讨论了PQC的一些重要方面,其中包括PQC,量子内核,具有量子优势的量子内核以及量子核的训练性。我们得出的结论是,具有混合核方法的量子核,也就是量子核方法,具有明显的优势作为QML的混合方法。它们不仅适用于嘈杂的中间量子量子(NISQ)设备,而且还可以用于解决所有类型的机器学习问题,包括回归,分类,聚类和降低尺寸。此外,除了量子效用之外,如果量子内核(即量子特征编码)在经典上是棘手的,则可以获得量子优势。
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
Quantum kernel methods, i.e., kernel methods with quantum kernels, offer distinct advantages as a hybrid quantum-classical approach to quantum machine learning (QML), including applicability to Noisy Intermediate-Scale Quantum (NISQ) devices and usage for solving all types of machine learning problems. Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space. For machine learning, the notion of similarity assumes that points close in the feature space should be close in the machine learning task space. In this paper, we discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings (a.k.a. quantum feature encodings) that are specific to machine learning tasks. Such task-specific optimal quantum embeddings, implicitly supporting feature selection, are valuable not only to quantum kernel methods in improving the latter's performance, but they can also be valuable to non-kernel QML methods based on parameterized quantum circuits (PQCs) as pretrained embeddings and for transfer learning. This further demonstrates the quantum utility, and quantum advantage (with classically-intractable quantum embeddings), of quantum kernel methods.
translated by 谷歌翻译
预测器重要性是经典和量子机学习(QML)数据预处理管道的关键部分。这项工作介绍了此类研究的第一个研究,其中探索了对QML模型的重要性与其经典的机器学习(CML)等效物进行了对比。我们开发了一种混合量子式体系结构,其中训练了QML模型,并根据现实世界数据集上的经典算法计算特征重要性值。该体系结构已在ESPN幻想足球数据上使用Qiskit StateSvector模拟器和IBM量子硬件(例如IBMQ Mumbai和IBMQ Montreal Systems)实现。即使我们处于嘈杂的中间量子量子(NISQ)时代,物理量子计算结果还是有希望的。为了促进当前量子标尺,我们创建了一个数据分层,模型聚合和新颖的验证方法。值得注意的是,与经典模型相比,量子模型的特征重要性具有更高的变化。我们可以证明等效QML和CML模型通过多样性测量是互补的。 QML和CML之间的多样性表明,两种方法都可以以不同的方式促进解决方案。在本文中,我们关注量子支持向量分类器(QSVC),变分量子电路(VQC)及其经典对应物。 ESPN和IBM幻想足球贸易助理将高级统计分析与沃森发现的自然语言处理相结合,以提供公平的个性化贸易建议。在这里,已经考虑了每个播放器的播放器评估数据,并且可以扩展此工作以计算其他QML模型(例如Quantum Boltzmann机器)的特征重要性。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
Quantum Kernel方法是量子机器学习的关键方法之一,这具有不需要优化的优点,并且具有理论简单。凭借这些属性,到目前为止已经开发了几种实验演示和对潜在优势的讨论。但是,正如古典机器学习所在的情况一样,并非所有量子机器学习模型都可以被视为内核方法。在这项工作中,我们探讨了具有深层参数化量子电路的量子机器学习模型,旨在超出传统量子核法。在这种情况下,预计表示功率和性能将得到增强,而培训过程可能是丢储Plateaus问题的瓶颈。然而,我们发现,在训练期间,深度足够的量子电路的参数不会从其初始值中移动到初始值,从而允许一阶扩展参数。这种行为类似于经典文献中的神经切线内核,并且可以通过另一个紧急内核,量子切线内核来描述这种深度变化量子机器学习。数值模拟表明,所提出的Quantum切线内核优于传统的Quantum核心核对ANSATZ生成的数据集。该工作提供了超出传统量子内核法的新方向,并探讨了用深层参数化量子电路的量子机器学习的潜在力量。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
We propose a classical-quantum hybrid algorithm for machine learning on near-term quantum processors, which we call quantum circuit learning. A quantum circuit driven by our framework learns a given task by tuning parameters implemented on it. The iterative optimization of the parameters allows us to circumvent the high-depth circuit. Theoretical investigation shows that a quantum circuit can approximate nonlinear functions, which is further confirmed by numerical simulations. Hybridizing a low-depth quantum circuit and a classical computer for machine learning, the proposed framework paves the way toward applications of near-term quantum devices for quantum machine learning.
translated by 谷歌翻译
深度学习是当今机器学习中最成功和最深远的策略之一。然而,神经网络的规模和效用仍然受到用于训练它们的当前硬件的极大限制。随着常规电脑快速接近将在未来几年的情况下,常规计算机迅速接近物理限制,这些问题越来越紧。由于这些原因,科学家们已经开始探索替代计算平台,如量子计算机,用于训练神经网络。近年来,变分量子电路已成为在嘈杂的中间秤量子器件上量子深度学习的最成功的方法之一。我们提出了一种混合量子古典神经网络架构,其中每个神经元是变形量子电路。我们使用模拟通用量子计算机和艺术通用量子计算机的状态来统一地分析该混合神经网络对一系列二元分类数据集的性能。在模拟硬件上,我们观察到混合神经网络的分类精度高出10%,比各个变分量子电路更好地最小化了20%。在Quantum硬件上,我们观察到每个模型仅在Qubit和栅极计数足够小时执行良好。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译