量子内核方法被认为是将量子计算机应用于机器学习问题的承诺大道。但是,最近的结果在确定机器学习方法的性能方面忽略了核心角色超级参数。在这项工作中,我们显示了如何优化量子内核的带宽可以从随机猜测提高内核方法的性能,以与最佳经典方法竞争。没有乘语优化,内核值随着Qubit计数呈指数级增长,这是最近观察结果的原因,即Quantum核心方法的性能随着量程计数而减小。我们通过使用多个量子内核和经典数据集的广泛数值实验来重现这些负面结果并显示,如果核心带宽被优化,则随着Qubit计数的增长而改善了性能。我们在古典和量子内核的带宽之间绘制了连接,并在这两种情况下显示了类似的行为。
translated by 谷歌翻译
Quantum machine learning techniques are commonly considered one of the most promising candidates for demonstrating practical quantum advantage. In particular, quantum kernel methods have been demonstrated to be able to learn certain classically intractable functions efficiently if the kernel is well-aligned with the target function. In the more general case, quantum kernels are known to suffer from exponential "flattening" of the spectrum as the number of qubits grows, preventing generalization and necessitating the control of the inductive bias by hyperparameters. We show that the general-purpose hyperparameter tuning techniques proposed to improve the generalization of quantum kernels lead to the kernel becoming well-approximated by a classical kernel, removing the possibility of quantum advantage. We provide extensive numerical evidence for this phenomenon utilizing multiple previously studied quantum feature maps and both synthetic and real data. Our results show that unless novel techniques are developed to control the inductive bias of quantum kernels, they are unlikely to provide a quantum advantage on classical data.
translated by 谷歌翻译
已知量子计算机可以在某些专业设置中使用经典的最先进的机器学习方法提供加速。例如,已证明量子内核方法可以在离散对数问题的学习版本上提供指数加速。了解量子模型的概括对于实现实际利益问题的类似加速至关重要。最近的结果表明,量子特征空间的指数大小阻碍了概括。尽管这些结果表明,量子模型在量子数数量较大时无法概括,但在本文中,我们表明这些结果依赖于过度限制性的假设。我们通过改变称为量子内核带宽的超参数来考虑更广泛的模型。我们分析了大量限制,并为可以以封闭形式求解的量子模型的概括提供了明确的公式。具体而言,我们表明,更改带宽的值可以使模型从不能概括到任何目标函数到对准目标的良好概括。我们的分析表明,带宽如何控制内核积分操作员的光谱,从而如何控制模型的电感偏置。我们从经验上证明,我们的理论正确地预测带宽如何影响质量模型在具有挑战性的数据集上的概括,包括远远超出我们理论假设的数据集。我们讨论了结果对机器学习中量子优势的含义。
translated by 谷歌翻译
量子机学习(QML)中的内核方法最近引起了人们的重大关注,作为在数据分析中获得量子优势的潜在候选者。在其他有吸引力的属性中,当训练基于内核的模型时,可以保证由于训练格局的凸度而找到最佳模型的参数。但是,这是基于以下假设:量子内核可以从量子硬件有效获得。在这项工作中,我们从准确估计内核值所需的资源的角度研究了量子内核的训练性。我们表明,在某些条件下,可以将量子内核在不同输入数据上的值呈指数浓缩(在量子数中)指向一些固定值,从而导致成功训练所需的测量数量的指数缩放。我们确定了可以导致集中度的四个来源,包括:数据嵌入,全球测量,纠缠和噪声的表达性。对于每个来源,分析得出量子内核的相关浓度结合。最后,我们表明,在处理经典数据时,训练用内核比对方法嵌入的参数化数据也容易受到指数浓度的影响。我们的结果通过数值仿真来验证几个QML任务。总体而言,我们提供指南,表明应避免某些功能,以确保量子内核方法的有效评估和训练性。
translated by 谷歌翻译
Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements. The quantum computation time scales linearly with dataset size and quadratic for classical post-processing. While our method scales in general exponentially in qubit number, we gain a substantial speed-up when running on intermediate-sized quantum computers. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. Our approach is robust to noise via a cost-free error mitigation scheme. We demonstrate the advantages of our methods for noisy quantum computers by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our method enables benchmarking of quantum machine learning algorithms with large datasets on currently available quantum computers.
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
Quantum Kernel方法是量子机器学习的关键方法之一,这具有不需要优化的优点,并且具有理论简单。凭借这些属性,到目前为止已经开发了几种实验演示和对潜在优势的讨论。但是,正如古典机器学习所在的情况一样,并非所有量子机器学习模型都可以被视为内核方法。在这项工作中,我们探讨了具有深层参数化量子电路的量子机器学习模型,旨在超出传统量子核法。在这种情况下,预计表示功率和性能将得到增强,而培训过程可能是丢储Plateaus问题的瓶颈。然而,我们发现,在训练期间,深度足够的量子电路的参数不会从其初始值中移动到初始值,从而允许一阶扩展参数。这种行为类似于经典文献中的神经切线内核,并且可以通过另一个紧急内核,量子切线内核来描述这种深度变化量子机器学习。数值模拟表明,所提出的Quantum切线内核优于传统的Quantum核心核对ANSATZ生成的数据集。该工作提供了超出传统量子内核法的新方向,并探讨了用深层参数化量子电路的量子机器学习的潜在力量。
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
作为量子优势的应用,对动态模拟和量子机学习(QML)的关注很大,而使用QML来增强动态模拟的可能性尚未得到彻底研究。在这里,我们开发了一个框架,用于使用QML方法模拟近期量子硬件上的量子动力学。我们使用概括范围,即机器学习模型在看不见的数据上遇到的错误,以严格分析此框架内算法的训练数据要求。这提供了一种保证,就量子和数据要求而言,我们的算法是资源有效的。我们的数字具有问题大小的有效缩放,我们模拟了IBMQ-Bogota上的Trotterization的20倍。
translated by 谷歌翻译
已经假设量子计算机可以很好地为机器学习中的应用提供很好。在本作工作中,我们分析通过量子内核定义的函数类。量子计算机提供了有效地计算符合难以计算的指数大密度运算符的内部产品。然而,具有指数大的特征空间使得普遍化的问题造成泛化的问题。此外,能够有效地评估高尺寸空间中的内部产品本身不能保证量子优势,因为已经是经典的漫步核可以对应于高或无限的维度再现核Hilbert空间(RKHS)。我们分析量子内核的频谱属性,并发现我们可以期待优势如果其RKHS低维度,并且包含很难经典计算的功能。如果已知目标函数位于该类中,则这意味着量子优势,因为量子计算机可以编码这种电感偏压,而没有同样的方式对功能类进行经典有效的方式。但是,我们表明查找合适的量子内核并不容易,因为内核评估可能需要指数倍数的测量。总之,我们的信息是有点令人发声的:我们猜测量子机器学习模型只有在我们设法将关于传递到量子电路的问题的知识编码的情况下,才能提供加速,同时将相同的偏差置于经典模型。难的。然而,在学习由量子流程生成的数据时,这些情况可能会被典雅地发生,但对于古典数据集来说,它们似乎更难。
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
数据装配过程是量子机学习的瓶颈之一,可能会否定任何量子加速。鉴于此,必须采用更有效的数据编码策略。我们提出了一种基于光子的骨气数据编码方案,该方案使用较少的编码层嵌入经典数据点,并通过将数据点映射到高维FOCK空间中,从而规避非线性光学组件的需求。电路的表达能力可以通过输入光子的数量来控制。我们的工作阐明了量子光子学在量子机学习模型的表达能力方面提供的独特优势。通过利用光子数依赖的表达能力,我们提出了三种不同的中间尺度量子兼容二进制分类方法,其所需资源适用于不同监督分类任务。
translated by 谷歌翻译
Quantum machine learning is a rapidly evolving field of research that could facilitate important applications for quantum computing and also significantly impact data-driven sciences. In our work, based on various arguments from complexity theory and physics, we demonstrate that a single Kerr mode can provide some "quantum enhancements" when dealing with kernel-based methods. Using kernel properties, neural tangent kernel theory, first-order perturbation theory of the Kerr non-linearity, and non-perturbative numerical simulations, we show that quantum enhancements could happen in terms of convergence time and generalization error. Furthermore, we make explicit indications on how higher-dimensional input data could be considered. Finally, we propose an experimental protocol, that we call \emph{quantum Kerr learning}, based on circuit QED.
translated by 谷歌翻译
现代量子机学习(QML)方法涉及在训练数据集上进行各种优化参数化量子电路,并随后对测试数据集(即,泛化)进行预测。在这项工作中,我们在培训数量为N $培训数据点后,我们在QML中对QML的普遍表现进行了全面的研究。我们表明,Quantum机器学习模型的泛化误差与$ T $培训门的尺寸在$ \ sqrt {t / n} $上缩放。当只有$ k \ ll t $ gates在优化过程中经历了大量变化时,我们证明了泛化误差改善了$ \ sqrt {k / n} $。我们的结果意味着将Unitaries编制到通常使用指数训练数据的量子计算行业的多项式栅极数量,这是一项通常使用指数尺寸训练数据的大量应用程序。我们还表明,使用量子卷积神经网络的相位过渡的量子状态的分类只需要一个非常小的训练数据集。其他潜在应用包括学习量子误差校正代码或量子动态模拟。我们的工作将新的希望注入QML领域,因为较少的培训数据保证了良好的概括。
translated by 谷歌翻译
Variational quantum algorithms (VQAs) utilize a hybrid quantum-classical architecture to recast problems of high-dimensional linear algebra as ones of stochastic optimization. Despite the promise of leveraging near- to intermediate-term quantum resources to accelerate this task, the computational advantage of VQAs over wholly classical algorithms has not been firmly established. For instance, while the variational quantum eigensolver (VQE) has been developed to approximate low-lying eigenmodes of high-dimensional sparse linear operators, analogous classical optimization algorithms exist in the variational Monte Carlo (VMC) literature, utilizing neural networks in place of quantum circuits to represent quantum states. In this paper we ask if classical stochastic optimization algorithms can be constructed paralleling other VQAs, focusing on the example of the variational quantum linear solver (VQLS). We find that such a construction can be applied to the VQLS, yielding a paradigm that could theoretically extend to other VQAs of similar form.
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
高品质,大型数据集在古典机器学习的发展和成功中发挥了至关重要的作用。量子机器学习(QML)是一个新的领域,旨在使用量子计算机进行数据分析,希望获得某种量子的量子优势。虽然大多数提议的QML架构是使用经典数据集的基准测试,但仍存在古典数据集上的QML是否会实现这样的优势。在这项工作中,我们争辩说,应该使用由量子状态组成的量子数据集。为此目的,我们介绍了由量子状态组成的Ntangled DataSet,其数量和多分纠缠的类型。我们首先展示如何培训量子神经网络,以在Ntangled DataSet中生成状态。然后,我们使用Ntangled DataSet来获得用于监督学习分类任务的基准测试QML模型。我们还考虑一个基于替代的纠缠基数据集,其是可扩展的,并且由量子电路准备的状态与不同深度的状态组成。作为我们的结果的副产品,我们介绍了一种用于产生多重石纠缠态的新方法,为量子纠缠理论提供量子神经网络的用例。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
本文使用Qiskit软件堆栈提出了金融支付行业中的量子支持矢量机(QSVM)算法的第一个端到端应用,用于金融支付行业中的分类问题。基于实际卡支付数据,进行了详尽的比较,以评估当前最新的量子机学习算法对经典方法带来的互补影响。使用量子支持矢量机的特征映射特征来探索一种搜索最佳功能的新方法。使用欺诈特定的关键绩效指标比较结果:基于人类专业知识(规则决策),经典的机器学习算法(随机森林,XGBoost)和基于量子的机器学习算法,从分析中提取了准确性,回忆和假阳性率。 。此外,通过使用结合经典和量子算法的合奏模型来更好地改善预防欺诈的决策,从而探索了混合经典量子方法。我们发现,正如预期的那样,结果高度依赖于用于选择它们的特征选择和算法。 QSVM对特征空间进行了互补的探索,从而在大幅度降低的数据集上拟合了量子硬件的当前状态,从而提高了混合量子古典方法的欺诈检测准确性。
translated by 谷歌翻译