Human and robot partners increasingly need to work together to perform tasks as a team. Robots designed for such collaboration must reason about how their task-completion strategies interplay with the behavior and skills of their human team members as they coordinate on achieving joint goals. Our goal in this work is to develop a computational framework for robot adaptation to human partners in human-robot team collaborations. We first present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task. By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge. Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners. We evaluate our model on a collaborative cooking task using an Overcooked simulator. Results of an online user study with 125 participants demonstrate that our framework improves the task performance and collaborative fluency of human-agent teams, as compared to state of the art reinforcement learning methods.
translated by 谷歌翻译
与人类合作需要迅速适应他们的个人优势,缺点和偏好。遗憾的是,大多数标准的多智能经纪增强学习技术,如自助(SP)或人口剧(PP),产生培训合作伙伴的代理商,并且对人类不完全概括。或者,研究人员可以使用行为克隆收集人体数据,培训人类模型,然后使用该模型培训“人类感知”代理(“行为克隆播放”或BCP)。虽然这种方法可以改善代理商的概括到新的人类共同球员,但它涉及首先收集大量人体数据的繁重和昂贵的步骤。在这里,我们研究如何培训与人类合作伙伴合作的代理的问题,而无需使用人类数据。我们认为这个问题的症结是制作各种培训伙伴。从竞争域中取得成功的多智能经纪人方法绘制灵感,我们发现令人惊讶的简单方法非常有效。我们培养我们的代理商合作伙伴作为对自行发行代理人口的最佳反应及其过去培训的过去检查点,这是我们呼叫虚构共同扮演(FCP)的方法。我们的实验专注于两位运动员协作烹饪模拟器,最近被提议作为与人类协调的挑战问题。我们发现,与新的代理商和人类合作伙伴配对时,FCP代理商会显着高于SP,PP和BCP。此外,人类还报告了强烈的主观偏好,以与所有基线与FCP代理合作。
translated by 谷歌翻译
临时团队合作是设计可以与新队友合作而无需事先协调的研究问题的研究问题。这项调查做出了两个贡献:首先,它提供了对临时团队工作问题不同方面的结构化描述。其次,它讨论了迄今为止该领域取得的进展,并确定了临时团队工作中需要解决的直接和长期开放问题。
translated by 谷歌翻译
虽然多代理学习的进步使得能够培训越来越复杂的代理商,但大多数现有技术都产生了最终政策,该政策不旨在适应新的合作伙伴的战略。但是,我们希望我们的AI代理商根据周围的战略来调整他们的战略。在这项工作中,我们研究了有条件的多代理模仿学习问题,我们可以在培训时间访问联合轨迹演示,我们必须在测试时间与新合作伙伴进行互动并适应新伙伴。这种环境是具有挑战性的,因为我们必须推断新的合作伙伴的战略并使我们的政策适应该战略,而不是了解环境奖励或动态。我们将该条件多代理模仿学习的问题正式化,提出了一种解决可扩展性和数据稀缺的困难的新方法。我们的主要洞察力是,多种代理游戏的合作伙伴的变化通常很高,并且可以通过低秩子空间来表示。利用张量分解的工具,我们的模型在EGO和合作伙伴代理战略上学习了低秩子空间,然后是infers并通过插值在子空间中互动到新的合作伙伴策略。我们用混合协作任务的实验,包括匪徒,粒子和Hanabi环境。此外,我们还测试我们对超级烹饪游戏的用户学习中的真实人体合作​​伙伴的条件政策。与基线相比,我们的模型更好地适应新的合作伙伴,并强大地处理各种设置,从离散/持续的动作和静态/在线评估与AI / Lean Partners。
translated by 谷歌翻译
人类代理团队,这是一个问题,其中人类和自治机构合作实现一项任务,是人类AI协作的典型。为有效的合作,人类希望有一个有效的计划,而是在现实的情况下,他们可能难以计算由于认知限制的最佳计划。在这种情况下,具有许多计算资源的代理的指导可能是有用的。但是,如果代理人明确指导人类行为,人类可能会觉得他们已经失去了自主,并由代理商控制。因此,我们调查了通过代理人行为提供的隐性指导。通过这种指导,代理商以一种方式使人类能够易于找到合作任务的有效计划,然后可以改善计划。由于人类自愿改善了他们的计划,他或她保持自治。我们通过将贝叶斯思想理论集成到现有的协作规划算法中并通过行为实验进行了模拟了一个具有隐含指导,并通过隐性指导的行为实验证明了使人们能够在改善计划和保留自治之间保持平衡。
translated by 谷歌翻译
我们提出了贝叶斯团队模仿学习者(BTIL),这是一种模仿学习算法,以模拟马尔可夫域中执行顺序任务的团队的行为。与现有的多机构模仿学习技术相反,BTIL明确模型并渗透了团队成员的时间变化的心理状态,从而从次优的团队合作的演示中实现了分散的团队政策的学习。此外,为了允许从小型数据集中进行样本和标签有效的政策学习,Btil采用了贝叶斯的角度,并且能够从半监督的示范中学习。我们证明并基准了BTIL在合成多代理任务以及人类代理团队工作的新型数据集上的性能。我们的实验表明,尽管团队成员(随时间变化且可能未对准)精神状态对其行为的影响,BTIL可以成功地从示威中学习团队政策。
translated by 谷歌翻译
在复杂的协作任务上共同努力需要代理商协调他们的行为。在实际交互之前明确或完全执行此操作并不总是可能也不充分。代理人还需要不断了解他人的当前行动,并迅速适应自己的行为。在这里,我们调查我们称之为信仰共鸣的精神状态(意图,目标)的效率,自动协调过程如何导致协作的解决问题。我们为协作剂(HAICA)提出了分层有源推断的模型。它将高效的贝叶斯理论与基于预测处理和主动推断的感知动作系统相结合。通过让一个药物的推断精神状态影响另一个代理人的预测信念来实现信仰共振,从而实现了他自己的目标和意图。这样,推断的精神状态影响了代理人自己的任务行为,没有明确的协作推理。我们在超核域中实施和评估此模型,其中两个代理具有不同程度的信仰共振组合,以满足膳食订单。我们的结果表明,基于HAICA的代理商实现了与最近现有技术方法相当的团队表现,同时产生了更低的计算成本。我们还表明,信仰共振在环境中特别有益,代理商是对环境的不对称知识。结果表明,信仰共振和有效推断允许快速高效的代理协调,因此可以用作合作认知剂的结构块。
translated by 谷歌翻译
在本文中,我们研究了不确定性下的顺序决策任务中可读性的概念。以前的作品将易读性扩展到了机器人运动以外的方案,要么集中在确定性设置上,要么在计算上太昂贵。我们提出的称为POL-MDP的方法能够处理不确定性,同时保持计算障碍。在几种不同复杂性的模拟场景中,我们建立了反对最新方法的方法的优势。我们还展示了将我们的清晰政策用作反向加强学习代理的示范,并根据最佳政策建立了他们的优越性。最后,我们通过用户研究评估计算政策的可读性,在该研究中,要求人们通过观察其行动来推断移动机器人的目标。
translated by 谷歌翻译
AI代理应该能够与人类协调以解决任务。我们考虑培训加强学习(RL)代理的问题,而不使用任何人类数据,即在零射击设置中,使其能够与人类合作。标准RL代理商通过自我播放学习。不幸的是,这些代理商只知道如何与自己合作,通常不会与人类的看不见的伙伴表现良好。如何以零射时的方式训练强大的代理的方法仍然需要研究。从最大熵RL激励,我们推出了集中的人口熵目标,以便于学习各种各样的代理商,后来用于培训坚强的代理与看不见的合作伙伴合作。所提出的方法与基线方法相比,其有效性,包括自助PPO,在流行的过度烹制的游戏环境中,包括自行式PPO,标准群体的培训(PBT)和基于轨迹分集的PBT。我们还通过真实人类进行在线实验,并进一步证明了该方法在现实世界中的功效。显示实验结果的补充视频可在https://youtu.be/xh-fkd0aake上获得。
translated by 谷歌翻译
When robots interact with humans in homes, roads, or factories the human's behavior often changes in response to the robot. Non-stationary humans are challenging for robot learners: actions the robot has learned to coordinate with the original human may fail after the human adapts to the robot. In this paper we introduce an algorithmic formalism that enables robots (i.e., ego agents) to co-adapt alongside dynamic humans (i.e., other agents) using only the robot's low-level states, actions, and rewards. A core challenge is that humans not only react to the robot's behavior, but the way in which humans react inevitably changes both over time and between users. To deal with this challenge, our insight is that -- instead of building an exact model of the human -- robots can learn and reason over high-level representations of the human's policy and policy dynamics. Applying this insight we develop RILI: Robustly Influencing Latent Intent. RILI first embeds low-level robot observations into predictions of the human's latent strategy and strategy dynamics. Next, RILI harnesses these predictions to select actions that influence the adaptive human towards advantageous, high reward behaviors over repeated interactions. We demonstrate that -- given RILI's measured performance with users sampled from an underlying distribution -- we can probabilistically bound RILI's expected performance across new humans sampled from the same distribution. Our simulated experiments compare RILI to state-of-the-art representation and reinforcement learning baselines, and show that RILI better learns to coordinate with imperfect, noisy, and time-varying agents. Finally, we conduct two user studies where RILI co-adapts alongside actual humans in a game of tag and a tower-building task. See videos of our user studies here: https://youtu.be/WYGO5amDXbQ
translated by 谷歌翻译
Interaction and cooperation with humans are overarching aspirations of artificial intelligence (AI) research. Recent studies demonstrate that AI agents trained with deep reinforcement learning are capable of collaborating with humans. These studies primarily evaluate human compatibility through "objective" metrics such as task performance, obscuring potential variation in the levels of trust and subjective preference that different agents garner. To better understand the factors shaping subjective preferences in human-agent cooperation, we train deep reinforcement learning agents in Coins, a two-player social dilemma. We recruit participants for a human-agent cooperation study and measure their impressions of the agents they encounter. Participants' perceptions of warmth and competence predict their stated preferences for different agents, above and beyond objective performance metrics. Drawing inspiration from social science and biology research, we subsequently implement a new "partner choice" framework to elicit revealed preferences: after playing an episode with an agent, participants are asked whether they would like to play the next round with the same agent or to play alone. As with stated preferences, social perception better predicts participants' revealed preferences than does objective performance. Given these results, we recommend human-agent interaction researchers routinely incorporate the measurement of social perception and subjective preferences into their studies.
translated by 谷歌翻译
与社会推动者的强化学习的最新进展使此类模型能够在特定的互动任务上实现人级的绩效。但是,大多数交互式场景并不是单独的版本作为最终目标。取而代之的是,与人类互动时,这些代理人的社会影响是重要的,并且在很大程度上没有探索。在这方面,这项工作提出了一种基于竞争行为的社会影响的新颖强化学习机制。我们提出的模型汇总了客观和社会感知机制,以得出用于调节人造药物学习的竞争得分。为了调查我们提出的模型,我们使用厨师的帽子卡游戏设计了一个互动游戏场景,并研究竞争调制如何改变代理商的比赛风格,以及这如何影响游戏中人类玩家的体验。我们的结果表明,与普通代理人相比,与竞争对手的代理人相比,人类可以检测到特定的社会特征,这直接影响了后续游戏中人类玩家的表现。我们通过讨论构成人工竞争得分的不同社会和客观特征如何有助于我们的结果来结束我们的工作。
translated by 谷歌翻译
机器学习的最新进展导致人们对可解释的AI(XAI)的兴趣越来越大,使人类能够深入了解机器学习模型的决策。尽管最近有这种兴趣,但XAI技术的实用性尚未在人机组合中得到特征。重要的是,XAI提供了增强团队情境意识(SA)和共享心理模型发展的希望,这是有效的人机团队的关键特征。快速开发这种心理模型在临时人机团队中尤其重要,因为代理商对他人的决策策略没有先验知识。在本文中,我们提出了两个新颖的人类受试者实验,以量化在人机组合场景中部署XAI技术的好处。首先,我们证明XAI技术可以支持SA($ P <0.05)$。其次,我们研究了通过协作AI政策抽象诱导的不同SA级别如何影响临时人机组合绩效。重要的是,我们发现XAI的好处不是普遍的,因为对人机团队的组成有很大的依赖。新手受益于XAI提供增加的SA($ P <0.05 $),但容易受到认知开销的影响($ P <0.05 $)。另一方面,专家性能随着基于XAI的支持($ p <0.05 $)而降低,这表明关注XAI的成本超过了从提供的其他信息中获得的收益以增强SA所获得的收益。我们的结果表明,研究人员必须通过仔细考虑人机团队组成以及XAI方法如何增强SA来故意在正确的情况下设计和部署正确的XAI技术。
translated by 谷歌翻译
合作多代理设置中的标准问题设置是自我播放(SP),其目标是训练一个很好地合作的代理团队。但是,最佳SP政策通常包含任意惯例(“握手”),并且与其他受独立训练的代理商或人类不兼容。后者的Desiderata最近由Hu等人正式化。 2020年作为零射击协调(ZSC)设置,并以其其他游戏(OP)算法进行了部分解决,该算法在纸牌游戏Hanabi中显示出改进的ZSC和人类表现。 OP假设访问环境的对称性,并防止代理在训练过程中以相互不相容的方式破坏它们。但是,正如作者指出的那样,发现给定环境的对称性是一个计算困难的问题。取而代之的是,我们通过简单的K级推理(KLR)Costa Gomes等人表明。 2006年,我们可以同步训练所有级别,我们可以在哈纳比(Hanabi)获得竞争性的ZSC和临时团队表现,包括与类似人类的代理机器人配对。我们还引入了一种具有最佳响应(SYKLRBR)的新方法,即同步的K级推理,该方法通过共同培训最佳响应来进一步提高同步KLR的性能。
translated by 谷歌翻译
哈纳比(Hanabi)是一款合作游戏,它带来了将其他玩家建模到最前沿的问题。在这个游戏中,协调的一组玩家可以利用预先建立的公约发挥出色的效果,但是在临时环境中进行比赛需要代理商适应其伴侣的策略,而没有以前的协调。在这种情况下评估代理需要各种各样的潜在伙伴人群,但是到目前为止,尚未以系统的方式考虑代理的行为多样性。本文提出了质量多样性算法作为有前途的算法类别,以生成多种人群为此目的,并使用MAP-ELITE生成一系列不同的Hanabi代理。我们还假设,在培训期间,代理商可以从多样化的人群中受益,并实施一个简单的“元策略”,以适应代理人的感知行为利基市场。我们表明,即使可以正确推断其伴侣的行为利基市场,即使培训其伴侣的行为利基市场,这种元策略也可以比通才策略更好地工作,但是在实践中,伴侣的行为取决于并干扰了元代理自己的行为,这表明是一条途径对于未来的研究,可以在游戏过程中表征另一个代理商的行为。
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译
当机器人与人类伴侣互动时,这些合作伙伴通常会因机器人而改变其行为。一方面,这是具有挑战性的,因为机器人必须学会与动态合作伙伴进行协调。但是,另一方面 - 如果机器人理解这些动态 - 它可以利用自己的行为,影响人类,并指导团队进行有效的协作。先前的研究使机器人能够学会影响其他机器人或模拟药物。在本文中,我们将这些学习方法扩展到现在影响人类。使人类特别难影响的原因是 - 人类不仅对机器人做出反应 - 而且单个用户对机器人的反应可能会随着时间而改变,而且不同的人类会以不同的方式对相同的机器人行为做出反应。因此,我们提出了一种强大的方法,该方法学会影响不断变化的伴侣动态。我们的方法首先在重复互动中与一组合作伙伴进行训练,并学会根据以前的状态,行动和奖励来预测当前伙伴的行为。接下来,我们通过对机器人与原始合作伙伴学习的轨迹进行采样轨迹迅速适应了新合作伙伴,然后利用这些现有行为来影响新的合作伙伴动态。我们将最终的算法与跨模拟环境和用户研究进行比较,并在其中进行了机器人和参与者协作建造塔楼的用户研究。我们发现,即使合作伙伴遵循新的或意外的动态,我们的方法也优于替代方案。用户研究的视频可在此处获得:https://youtu.be/lyswm8an18g
translated by 谷歌翻译
当人类彼此合作时,他们经常通过观察他人来做出决定,并考虑到他们的行为可能在整个团队中的后果,而不是贪婪地做到最好的事情。我们希望我们的AI代理商通过捕获其合作伙伴的模型来有效地以类似的方式协作。在这项工作中,我们提出并分析了分散的多武装强盗(MAB)问题,耦合奖励作为更一般的多代理协作的抽象。我们展示了当申请分散的强盗团队时单代理最佳MAB算法的NA \“IVE扩展失败。相反,我们提出了一个合作伙伴感知策略,用于联合连续决策,这些策略扩展了众所周知的单王子的上置信度算法。我们分析表明,我们的拟议战略达到了对数遗憾,并提供了涉及人类AI和人机协作的广泛实验,以验证我们的理论发现。我们的结果表明,拟议的合作伙伴感知策略优于其他已知方法,以及我们的人类主题研究表明人类宁愿与实施我们合作伙伴感知战略的AI代理商合作。
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译