与社会推动者的强化学习的最新进展使此类模型能够在特定的互动任务上实现人级的绩效。但是,大多数交互式场景并不是单独的版本作为最终目标。取而代之的是,与人类互动时,这些代理人的社会影响是重要的,并且在很大程度上没有探索。在这方面,这项工作提出了一种基于竞争行为的社会影响的新颖强化学习机制。我们提出的模型汇总了客观和社会感知机制,以得出用于调节人造药物学习的竞争得分。为了调查我们提出的模型,我们使用厨师的帽子卡游戏设计了一个互动游戏场景,并研究竞争调制如何改变代理商的比赛风格,以及这如何影响游戏中人类玩家的体验。我们的结果表明,与普通代理人相比,与竞争对手的代理人相比,人类可以检测到特定的社会特征,这直接影响了后续游戏中人类玩家的表现。我们通过讨论构成人工竞争得分的不同社会和客观特征如何有助于我们的结果来结束我们的工作。
translated by 谷歌翻译
Interaction and cooperation with humans are overarching aspirations of artificial intelligence (AI) research. Recent studies demonstrate that AI agents trained with deep reinforcement learning are capable of collaborating with humans. These studies primarily evaluate human compatibility through "objective" metrics such as task performance, obscuring potential variation in the levels of trust and subjective preference that different agents garner. To better understand the factors shaping subjective preferences in human-agent cooperation, we train deep reinforcement learning agents in Coins, a two-player social dilemma. We recruit participants for a human-agent cooperation study and measure their impressions of the agents they encounter. Participants' perceptions of warmth and competence predict their stated preferences for different agents, above and beyond objective performance metrics. Drawing inspiration from social science and biology research, we subsequently implement a new "partner choice" framework to elicit revealed preferences: after playing an episode with an agent, participants are asked whether they would like to play the next round with the same agent or to play alone. As with stated preferences, social perception better predicts participants' revealed preferences than does objective performance. Given these results, we recommend human-agent interaction researchers routinely incorporate the measurement of social perception and subjective preferences into their studies.
translated by 谷歌翻译
作为一个重要的心理和社会实验,迭代的囚犯困境(IPD)将合作或缺陷作为原子行动视为选择。我们建议研究迭代的囚犯困境(IPD)游戏中在线学习算法的行为,在那里我们研究了整个强化学习剂:多臂匪徒,上下文的强盗和钢筋学习。我们根据迭代囚犯的困境的比赛进行评估,其中多个特工可以以顺序竞争。这使我们能够分析由多个自私的独立奖励驱动的代理所学到的政策的动态,还使我们研究了这些算法适合人类行为的能力。结果表明,考虑当前的情况做出决定是这种社会困境游戏中最糟糕的情况。陈述了有关在线学习行为和临床验证的倍数,以此作为将人工智能算法与人类行为及其在神经精神病疾病中的异常状态联系起来的努力。
translated by 谷歌翻译
哈纳比(Hanabi)是一款合作游戏,它带来了将其他玩家建模到最前沿的问题。在这个游戏中,协调的一组玩家可以利用预先建立的公约发挥出色的效果,但是在临时环境中进行比赛需要代理商适应其伴侣的策略,而没有以前的协调。在这种情况下评估代理需要各种各样的潜在伙伴人群,但是到目前为止,尚未以系统的方式考虑代理的行为多样性。本文提出了质量多样性算法作为有前途的算法类别,以生成多种人群为此目的,并使用MAP-ELITE生成一系列不同的Hanabi代理。我们还假设,在培训期间,代理商可以从多样化的人群中受益,并实施一个简单的“元策略”,以适应代理人的感知行为利基市场。我们表明,即使可以正确推断其伴侣的行为利基市场,即使培训其伴侣的行为利基市场,这种元策略也可以比通才策略更好地工作,但是在实践中,伴侣的行为取决于并干扰了元代理自己的行为,这表明是一条途径对于未来的研究,可以在游戏过程中表征另一个代理商的行为。
translated by 谷歌翻译
与人类合作需要迅速适应他们的个人优势,缺点和偏好。遗憾的是,大多数标准的多智能经纪增强学习技术,如自助(SP)或人口剧(PP),产生培训合作伙伴的代理商,并且对人类不完全概括。或者,研究人员可以使用行为克隆收集人体数据,培训人类模型,然后使用该模型培训“人类感知”代理(“行为克隆播放”或BCP)。虽然这种方法可以改善代理商的概括到新的人类共同球员,但它涉及首先收集大量人体数据的繁重和昂贵的步骤。在这里,我们研究如何培训与人类合作伙伴合作的代理的问题,而无需使用人类数据。我们认为这个问题的症结是制作各种培训伙伴。从竞争域中取得成功的多智能经纪人方法绘制灵感,我们发现令人惊讶的简单方法非常有效。我们培养我们的代理商合作伙伴作为对自行发行代理人口的最佳反应及其过去培训的过去检查点,这是我们呼叫虚构共同扮演(FCP)的方法。我们的实验专注于两位运动员协作烹饪模拟器,最近被提议作为与人类协调的挑战问题。我们发现,与新的代理商和人类合作伙伴配对时,FCP代理商会显着高于SP,PP和BCP。此外,人类还报告了强烈的主观偏好,以与所有基线与FCP代理合作。
translated by 谷歌翻译
Human and robot partners increasingly need to work together to perform tasks as a team. Robots designed for such collaboration must reason about how their task-completion strategies interplay with the behavior and skills of their human team members as they coordinate on achieving joint goals. Our goal in this work is to develop a computational framework for robot adaptation to human partners in human-robot team collaborations. We first present an algorithm for autonomously recognizing available task-completion strategies by observing human-human teams performing a collaborative task. By transforming team actions into low dimensional representations using hidden Markov models, we can identify strategies without prior knowledge. Robot policies are learned on each of the identified strategies to construct a Mixture-of-Experts model that adapts to the task strategies of unseen human partners. We evaluate our model on a collaborative cooking task using an Overcooked simulator. Results of an online user study with 125 participants demonstrate that our framework improves the task performance and collaborative fluency of human-agent teams, as compared to state of the art reinforcement learning methods.
translated by 谷歌翻译
通过少数院校拥有不懈的努力,最近在设计超人AIS中的重大进展,在无限制的德克萨斯州举行(NLTH)中,是大规模不完美信息游戏研究的主要测试平台。然而,新研究人员对新的研究人员来说仍然有挑战性,因为没有与现有方法相比,这严重阻碍了本研究区域的进一步发展。在这项工作中,我们展示了OpenHoldem,一个用于使用NLTH的大规模不完美信息游戏研究的集成工具包。 OpenHoldem对这一研究方向进行了三个主要贡献:1)用于彻底评估不同NLTH AIS,2)用于NLTH AI的四个公开可用的强大基线的标准化评估方案,以及3)一个在线测试平台,公众易于使用API nlth ai评估。我们在Holdem.Ia.ac.CN发布了OpenHoldem,希望它有助于进一步研究该领域的未解决的理论和计算问题,并培养对手建模和人机互动学习等关键研究问题。
translated by 谷歌翻译
本文通过将影响建模的任务视为强化学习(RL)过程,引入了范式转变。根据拟议的范式,RL代理通过尝试通过其环境(即背景)来最大化一组奖励(即行为和情感模式)来学习政策(即情感互动)。我们的假设是,RL是交织的有效范式影响引起和与行为和情感示威的表现。重要的是,我们对达马西奥的躯体标记假设的第二个假设建设是,情绪可以成为决策的促进者。我们通过训练Go-Blend Agents来对人类的唤醒和行为进行模型来检验赛车游戏中的假设; Go-Blend是Go-explore算法的修改版本,该版本最近在硬探索任务中展示了最高性能。我们首先改变了基于唤醒的奖励功能,并观察可以根据指定的奖励有效地显示情感和行为模式调色板的代理。然后,我们使用基于唤醒的状态选择机制来偏向Go-Blend探索的策略。我们的发现表明,Go-Blend不仅是有效的影响建模范式,而且更重要的是,情感驱动的RL改善了探索并产生更高的性能剂,从而验证了Damasio在游戏领域中的假设。
translated by 谷歌翻译
随着alphago的突破,人机游戏的AI已经成为一个非常热门的话题,吸引了世界各地的研究人员,这通常是测试人工智能的有效标准。已经开发了各种游戏AI系统(AIS),如Plibratus,Openai Five和AlphaStar,击败了专业人员。在本文中,我们调查了最近的成功游戏AIS,覆盖棋盘游戏AIS,纸牌游戏AIS,第一人称射击游戏AIS和实时战略游戏AIS。通过这项调查,我们1)比较智能决策领域的不同类型游戏之间的主要困难; 2)说明了开发专业水平AIS的主流框架和技术; 3)提高当前AIS中的挑战或缺点,以实现智能决策; 4)试图提出奥运会和智能决策技巧的未来趋势。最后,我们希望这篇简短的审查可以为初学者提供介绍,激发了在游戏中AI提交的研究人员的见解。
translated by 谷歌翻译
2021年,约翰霍普金斯大学应用物理实验室举行了内部挑战,以开发可以在合作牌游戏游戏Hanabi擅长的人工智能(AI)代理商。代理商被评估了他们与人类参与者从未遇到过的人类参与者的能力。本研究详细介绍了通过实现16.5的人类普及平均得分而赢得挑战的代理人,表现出目前的人类机器人Hanabi评分。获奖代理商的发展包括观察和准确地建立了作者在Hanabi的决策,然后用作者的行为克隆培训。值得注意的是,通过首先模仿人的决策,该代理商发现了人类互补的游戏风格,然后探讨了导致更高模拟人站分数的人类策略的变化。这项工作详细探讨了这项人类兼容的Hanabi队友的设计和实施,以及人类互补策略的存在和影响以及如何探索如何在人机团队中获得AI的更成功应用。
translated by 谷歌翻译
软件测试活动旨在找到软件产品的可能缺陷,并确保该产品满足其预期要求。一些软件测试接近的方法缺乏自动化或部分自动化,这增加了测试时间和整体软件测试成本。最近,增强学习(RL)已成功地用于复杂的测试任务中,例如游戏测试,回归测试和测试案例优先级,以自动化该过程并提供持续的适应。从业者可以通过从头开始实现RL算法或使用RL框架来使用RL。开发人员已广泛使用这些框架来解决包括软件测试在内的各个领域中的问题。但是,据我们所知,尚无研究从经验上评估RL框架中实用算法的有效性和性能。在本文中,我们凭经验研究了精心选择的RL算法在两个重要的软件测试任务上的应用:在连续集成(CI)和游戏测试的上下文中测试案例的优先级。对于游戏测试任务,我们在简单游戏上进行实验,并使用RL算法探索游戏以检测错误。结果表明,一些选定的RL框架,例如Tensorforce优于文献的最新方法。为了确定测试用例的优先级,我们在CI环境上运行实验,其中使用来自不同框架的RL算法来对测试用例进行排名。我们的结果表明,在某些情况下,预实算算法之间的性能差异很大,激励了进一步的研究。此外,建议对希望选择RL框架的研究人员进行一些基准问题的经验评估,以确保RL算法按预期执行。
translated by 谷歌翻译
由于需要确保安全可靠的人工智能(AI),因此在过去几年中,机器伦理学受到了越来越多的关注。这两种在机器伦理中使用的主要理论是道义和功利主义伦理。另一方面,美德伦理经常被称为另一种伦理理论。尽管这种有趣的方法比流行的道德理论具有一定的优势,但由于其形式化,编纂和解决道德困境以训练良性剂的挑战,工程人工贤惠的媒介几乎没有努力。我们建议通过使用充满道德困境的角色扮演游戏来弥合这一差距。有几种这样的游戏,例如论文,生活很奇怪,主要角色遇到的情况必须通过放弃对他们所珍视的其他东西来选择正确的行动方案。我们从此类游戏中汲取灵感,以展示如何设计系统的角色扮演游戏来发展人造代理中的美德。使用现代的AI技术,例如基于亲和力的强化学习和可解释的AI,我们激励了扮演这种角色扮演游戏的良性代理,以及通过美德道德镜头对他们的决策进行检查。这种代理和环境的发展是朝着实际上正式化和证明美德伦理在伦理代理发展的价值的第一步。
translated by 谷歌翻译
多代理系统(例如自动驾驶或工厂)作为服务的一些最相关的应用程序显示混合动机方案,代理商可能具有相互矛盾的目标。在这些环境中,代理可能会在独立学习下的合作方面学习不良的结果,例如过度贪婪的行为。在现实世界社会的动机中,在这项工作中,我们建议利用市场力量为代理商成为合作的激励措施。正如囚犯困境的迭代版本所证明的那样,拟议的市场配方可以改变游戏的动力,以始终如一地学习合作政策。此外,我们在空间和时间扩展的设置中评估了不同数量的代理的方法。我们从经验上发现,市场的存在可以通过其交易活动改善总体结果和代理人的回报。
translated by 谷歌翻译
我们展示了单轨道路问题。在这个问题中,两个代理在一条道路的相对位置时面对每个代理,这一次只能有一个试剂通过。我们专注于一个代理人是人类的情景,而另一个是一种自主代的代理人。我们在一个简单的网格域中与人类对象进行实验,这模拟了单轨道路问题。我们表明,当数据有限时,建立准确的人类模型是非常具有挑战性的,并且基于该数据的加强学习代理在实践中表现不佳。但是,我们表明,试图最大限度地提高人力效用和自己的实用程序的线性组合的代理,达到了高分,并且显着优于其他基线,包括试图仅最大化其自身的实用性的代理。
translated by 谷歌翻译
强化学习(RL)的最新进展使得可以在广泛的应用中开发出擅长的复杂剂。使用这种代理商的模拟可以在难以在现实世界中进行科学实验的情景中提供有价值的信息。在本文中,我们研究了足球RL代理商的游戏风格特征,并揭示了在训练期间可能发展的策略。然后将学习的策略与真正的足球运动员进行比较。我们探索通过使用聚合统计和社交网络分析(SNA)来探索使用模拟环境的学习内容。结果,我们发现(1)代理商的竞争力与各种SNA指标之间存在强烈的相关性,并且(2)RL代理商的各个方面,游戏风格与现实世界足球运动员相似,因为代理人变得更具竞争力。我们讨论了可能有必要的进一步进展,以改善我们必须充分利用RL进行足球的分析所需的理解。
translated by 谷歌翻译
可解释的人工智能的最新发展有望改变人类机器人互动的潜力:机器人决策的解释可能会影响用户的看法,证明其可靠性并提高信任。但是,尚未对解释其决定的机器人看法的影响进行彻底研究。为了分析可解释的机器人的效果,我们进行了一项研究,其中两个模拟机器人可以玩竞争性棋盘游戏。当一个机器人解释其动作时,另一个机器人只宣布它们。提供有关其行为的解释不足以改变机器人的感知能力,智力,可爱性或安全等级。但是,结果表明,解释其动作的机器人被认为是更活泼和人类的。这项研究证明了对可解释的人类机器人相互作用的必要性和潜力,以及对其效应作为新的研究方向的更广泛评估。
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译
Taking advice from others requires confidence in their competence. This is important for interaction with peers, but also for collaboration with social robots and artificial agents. Nonetheless, we do not always have access to information about others' competence or performance. In these uncertain environments, do our prior beliefs about the nature and the competence of our interacting partners modulate our willingness to rely on their judgments? In a joint perceptual decision making task, participants made perceptual judgments and observed the simulated estimates of either a human participant, a social humanoid robot or a computer. Then they could modify their estimates based on this feedback. Results show participants' belief about the nature of their partner biased their compliance with its judgments: participants were more influenced by the social robot than human and computer partners. This difference emerged strongly at the very beginning of the task and decreased with repeated exposure to empirical feedback on the partner's responses, disclosing the role of prior beliefs in social influence under uncertainty. Furthermore, the results of our functional task suggest an important difference between human-human and human-robot interaction in the absence of overt socially relevant signal from the partner: the former is modulated by social normative mechanisms, whereas the latter is guided by purely informational mechanisms linked to the perceived competence of the partner.
translated by 谷歌翻译
除了独奏游戏外,棋盘游戏至少需要其他玩家才能玩。因此,当对手失踪时,我们创建了人工智能(AI)代理商来对抗我们。这些AI代理是通过多种方式创建的,但是这些代理的一个挑战是,与我们相比,代理可以具有较高的能力。在这项工作中,我们描述了如何创建玩棋盘游戏的较弱的AI代理。我们使用Tic-Tac-toe,九名成员的莫里斯和曼卡拉,我们的技术使用了增强学习模型,代理商使用Q学习算法来学习这些游戏。我们展示了这些代理商如何学会完美地玩棋盘游戏,然后我们描述了制作这些代理商较弱版本的方法。最后,我们提供了比较AI代理的方法。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译