哈纳比(Hanabi)是一款合作游戏,它带来了将其他玩家建模到最前沿的问题。在这个游戏中,协调的一组玩家可以利用预先建立的公约发挥出色的效果,但是在临时环境中进行比赛需要代理商适应其伴侣的策略,而没有以前的协调。在这种情况下评估代理需要各种各样的潜在伙伴人群,但是到目前为止,尚未以系统的方式考虑代理的行为多样性。本文提出了质量多样性算法作为有前途的算法类别,以生成多种人群为此目的,并使用MAP-ELITE生成一系列不同的Hanabi代理。我们还假设,在培训期间,代理商可以从多样化的人群中受益,并实施一个简单的“元策略”,以适应代理人的感知行为利基市场。我们表明,即使可以正确推断其伴侣的行为利基市场,即使培训其伴侣的行为利基市场,这种元策略也可以比通才策略更好地工作,但是在实践中,伴侣的行为取决于并干扰了元代理自己的行为,这表明是一条途径对于未来的研究,可以在游戏过程中表征另一个代理商的行为。
translated by 谷歌翻译
2021年,约翰霍普金斯大学应用物理实验室举行了内部挑战,以开发可以在合作牌游戏游戏Hanabi擅长的人工智能(AI)代理商。代理商被评估了他们与人类参与者从未遇到过的人类参与者的能力。本研究详细介绍了通过实现16.5的人类普及平均得分而赢得挑战的代理人,表现出目前的人类机器人Hanabi评分。获奖代理商的发展包括观察和准确地建立了作者在Hanabi的决策,然后用作者的行为克隆培训。值得注意的是,通过首先模仿人的决策,该代理商发现了人类互补的游戏风格,然后探讨了导致更高模拟人站分数的人类策略的变化。这项工作详细探讨了这项人类兼容的Hanabi队友的设计和实施,以及人类互补策略的存在和影响以及如何探索如何在人机团队中获得AI的更成功应用。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
Monte Carlo Tree Search (MCTS) is a recently proposed search method that combines the precision of tree search with the generality of random sampling. It has received considerable interest due to its spectacular success in the difficult problem of computer Go, but has also proved beneficial in a range of other domains. This paper is a survey of the literature to date, intended to provide a snapshot of the state of the art after the first five years of MCTS research. We outline the core algorithm's derivation, impart some structure on the many variations and enhancements that have been proposed, and summarise the results from the key game and non-game domains to which MCTS methods have been applied. A number of open research questions indicate that the field is ripe for future work.
translated by 谷歌翻译
合作多代理设置中的标准问题设置是自我播放(SP),其目标是训练一个很好地合作的代理团队。但是,最佳SP政策通常包含任意惯例(“握手”),并且与其他受独立训练的代理商或人类不兼容。后者的Desiderata最近由Hu等人正式化。 2020年作为零射击协调(ZSC)设置,并以其其他游戏(OP)算法进行了部分解决,该算法在纸牌游戏Hanabi中显示出改进的ZSC和人类表现。 OP假设访问环境的对称性,并防止代理在训练过程中以相互不相容的方式破坏它们。但是,正如作者指出的那样,发现给定环境的对称性是一个计算困难的问题。取而代之的是,我们通过简单的K级推理(KLR)Costa Gomes等人表明。 2006年,我们可以同步训练所有级别,我们可以在哈纳比(Hanabi)获得竞争性的ZSC和临时团队表现,包括与类似人类的代理机器人配对。我们还引入了一种具有最佳响应(SYKLRBR)的新方法,即同步的K级推理,该方法通过共同培训最佳响应来进一步提高同步KLR的性能。
translated by 谷歌翻译
临时团队合作是设计可以与新队友合作而无需事先协调的研究问题的研究问题。这项调查做出了两个贡献:首先,它提供了对临时团队工作问题不同方面的结构化描述。其次,它讨论了迄今为止该领域取得的进展,并确定了临时团队工作中需要解决的直接和长期开放问题。
translated by 谷歌翻译
深度加强学习(RL)的最新进展导致许多2人零和游戏中的相当大的进展,如去,扑克和星际争霸。这种游戏的纯粹对抗性质允许概念上简单地应用R1方法。然而,现实世界的设置是许多代理商,代理交互是复杂的共同利益和竞争方面的混合物。我们认为外交,一个旨在突出由多种代理交互导致的困境的7人棋盘游戏。它还具有大型组合动作空间和同时移动,这对RL算法具有具有挑战性。我们提出了一个简单但有效的近似最佳响应操作员,旨在处理大型组合动作空间并同时移动。我们还介绍了一系列近似虚构游戏的政策迭代方法。通过这些方法,我们成功地将RL申请到外交:我们认为我们的代理商令人信服地令人信服地表明,游戏理论均衡分析表明新过程产生了一致的改进。
translated by 谷歌翻译
Multi-agent artificial intelligence research promises a path to develop intelligent technologies that are more human-like and more human-compatible than those produced by "solipsistic" approaches, which do not consider interactions between agents. Melting Pot is a research tool developed to facilitate work on multi-agent artificial intelligence, and provides an evaluation protocol that measures generalization to novel social partners in a set of canonical test scenarios. Each scenario pairs a physical environment (a "substrate") with a reference set of co-players (a "background population"), to create a social situation with substantial interdependence between the individuals involved. For instance, some scenarios were inspired by institutional-economics-based accounts of natural resource management and public-good-provision dilemmas. Others were inspired by considerations from evolutionary biology, game theory, and artificial life. Melting Pot aims to cover a maximally diverse set of interdependencies and incentives. It includes the commonly-studied extreme cases of perfectly-competitive (zero-sum) motivations and perfectly-cooperative (shared-reward) motivations, but does not stop with them. As in real-life, a clear majority of scenarios in Melting Pot have mixed incentives. They are neither purely competitive nor purely cooperative and thus demand successful agents be able to navigate the resulting ambiguity. Here we describe Melting Pot 2.0, which revises and expands on Melting Pot. We also introduce support for scenarios with asymmetric roles, and explain how to integrate them into the evaluation protocol. This report also contains: (1) details of all substrates and scenarios; (2) a complete description of all baseline algorithms and results. Our intention is for it to serve as a reference for researchers using Melting Pot 2.0.
translated by 谷歌翻译
我们介绍了DeepNash,这是一种能够学习从头开始播放不完美的信息游戏策略的自主代理,直到人类的专家级别。 Stratego是人工智能(AI)尚未掌握的少数标志性棋盘游戏之一。这个受欢迎的游戏具有$ 10^{535} $节点的巨大游戏树,即,$ 10^{175} $倍的$倍于GO。它具有在不完美的信息下需要决策的其他复杂性,类似于德克萨斯州Hold'em扑克,该扑克的游戏树较小(以$ 10^{164} $节点为单位)。 Stratego中的决策是在许多离散的动作上做出的,而动作与结果之间没有明显的联系。情节很长,在球员获胜之前经常有数百次动作,而Stratego中的情况则不能像扑克中那样轻松地分解成管理大小的子问题。由于这些原因,Stratego几十年来一直是AI领域的巨大挑战,现有的AI方法几乎没有达到业余比赛水平。 Deepnash使用游戏理论,无模型的深钢筋学习方法,而无需搜索,该方法学会通过自我播放来掌握Stratego。 DeepNash的关键组成部分的正则化NASH Dynamics(R-NAD)算法通过直接修改基础多项式学习动力学来收敛到近似NASH平衡,而不是围绕它“循环”。 Deepnash在Stratego中击败了现有的最先进的AI方法,并在Gravon Games平台上获得了年度(2022年)和历史前3名,并与人类专家竞争。
translated by 谷歌翻译
游戏历史悠久的历史悠久地作为人工智能进步的基准。最近,使用搜索和学习的方法在一系列完美的信息游戏中表现出强烈的表现,并且使用游戏理论推理和学习的方法对特定的不完美信息扑克变体表示了很强的性能。我们介绍游戏玩家,一个通用算法,统一以前的方法,结合导游搜索,自助学习和游戏理论推理。游戏播放器是实现大型完美和不完美信息游戏中强大实证性能的第一个算法 - 这是一项真正的任意环境算法的重要一步。我们证明了游戏玩家是声音,融合到完美的游戏,因为可用的计算时间和近似容量增加。游戏播放器在国际象棋上达到了强大的表现,然后击败了最强大的公开可用的代理商,在头上没有限制德克萨斯州扑克(Slumbot),击败了苏格兰院子的最先进的代理人,这是一个不完美的信息游戏,说明了引导搜索,学习和游戏理论推理的价值。
translated by 谷歌翻译
在各种策略中,学会对任何混合物进行最佳作用是竞争游戏中重要的实践兴趣。在本文中,我们提出了同时满足两个Desiderata的单纯形式:i)学习以单个条件网络为代表的战略性不同的基础政策;ii)使用同一网络,通过基础策略的单纯形式学习最佳反应。我们表明,由此产生的条件策略有效地包含了有关对手的先前信息,从而在具有可拖动最佳响应的游戏中几乎可以针对任意混合策略的最佳回报。我们验证此类政策在不确定性下表现出色,并在测试时使用这种灵活性提供了见解。最后,我们提供的证据表明,对任何混合政策学习最佳响应是战略探索的有效辅助任务,这本身可以导致更多的性能人群。
translated by 谷歌翻译
与人类合作需要迅速适应他们的个人优势,缺点和偏好。遗憾的是,大多数标准的多智能经纪增强学习技术,如自助(SP)或人口剧(PP),产生培训合作伙伴的代理商,并且对人类不完全概括。或者,研究人员可以使用行为克隆收集人体数据,培训人类模型,然后使用该模型培训“人类感知”代理(“行为克隆播放”或BCP)。虽然这种方法可以改善代理商的概括到新的人类共同球员,但它涉及首先收集大量人体数据的繁重和昂贵的步骤。在这里,我们研究如何培训与人类合作伙伴合作的代理的问题,而无需使用人类数据。我们认为这个问题的症结是制作各种培训伙伴。从竞争域中取得成功的多智能经纪人方法绘制灵感,我们发现令人惊讶的简单方法非常有效。我们培养我们的代理商合作伙伴作为对自行发行代理人口的最佳反应及其过去培训的过去检查点,这是我们呼叫虚构共同扮演(FCP)的方法。我们的实验专注于两位运动员协作烹饪模拟器,最近被提议作为与人类协调的挑战问题。我们发现,与新的代理商和人类合作伙伴配对时,FCP代理商会显着高于SP,PP和BCP。此外,人类还报告了强烈的主观偏好,以与所有基线与FCP代理合作。
translated by 谷歌翻译
自我玩法是在马尔可夫游戏中构建解决方案的常见范式,可以在协作环境中产生最佳政策。但是,这些政策通常会采用高度专业的惯例,这使与新颖伴侣的比赛变得困难。为了解决这一问题,最近的方法依赖于将对称性和惯例意识编码为政策培训,但是这些方法需要强烈的环境假设,并使政策培训变得复杂。因此,我们建议将惯例的学习转移到信仰空间。具体而言,我们提出了一种信念学习模型,该模型可以维持对培训时间未观察到的政策推出的信念,因此可以在考试时进行解码和适应新的惯例。我们展示了如何利用这一模型来搜索和培训各种政策池中最佳响应,以极大地改善临时团队游戏。我们还展示了我们的设置如何促进细微的代理惯例的解释性和解释性。
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译
Ad Hoc团队合作问题描述了代理商必须与以前看不见的代理商合作以实现共同目标的情况。对于在这些场景中成功的代理商,它必须具有合适的合作技能。可以通过使用域知识来设计代理人的行为来实现协作技巧的合作技能。但是,在复杂的域中,可能无法使用域知识。因此,值得探索如何直接从数据中学习合作技能。在这项工作中,我们在临时团队合作问题的背景下申请元加强学习(Meta-RL)制定。我们的经验结果表明,这种方法可以在两个合作环境中产生具有不同合作环境的强大合作社:社会合议和语言解释。(这是扩展抽象版的全文。)
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译
在过去的十年中,多智能经纪人强化学习(Marl)已经有了重大进展,但仍存在许多挑战,例如高样本复杂性和慢趋同稳定的政策,在广泛的部署之前需要克服,这是可能的。然而,在实践中,许多现实世界的环境已经部署了用于生成策略的次优或启发式方法。一个有趣的问题是如何最好地使用这些方法作为顾问,以帮助改善多代理领域的加强学习。在本文中,我们提供了一个原则的框架,用于将动作建议纳入多代理设置中的在线次优顾问。我们描述了在非传记通用随机游戏环境中提供多种智能强化代理(海军上将)的问题,并提出了两种新的基于Q学习的算法:海军上将决策(海军DM)和海军上将 - 顾问评估(Admiral-AE) ,这使我们能够通过适当地纳入顾问(Admiral-DM)的建议来改善学习,并评估顾问(Admiral-AE)的有效性。我们从理论上分析了算法,并在一般加上随机游戏中提供了关于他们学习的定点保证。此外,广泛的实验说明了这些算法:可以在各种环境中使用,具有对其他相关基线的有利相比的性能,可以扩展到大状态行动空间,并且对来自顾问的不良建议具有稳健性。
translated by 谷歌翻译
Alphazero,Leela Chess Zero和Stockfish Nnue革新了计算机国际象棋。本书对此类引擎的技术内部工作进行了完整的介绍。该书分为四个主要章节 - 不包括第1章(简介)和第6章(结论):第2章引入神经网络,涵盖了所有用于构建深层网络的基本构建块,例如Alphazero使用的网络。内容包括感知器,后传播和梯度下降,分类,回归,多层感知器,矢量化技术,卷积网络,挤压网络,挤压和激发网络,完全连接的网络,批处理归一化和横向归一化和跨性线性单位,残留层,剩余层,过度效果和底漆。第3章介绍了用于国际象棋发动机以及Alphazero使用的经典搜索技术。内容包括minimax,alpha-beta搜索和蒙特卡洛树搜索。第4章展示了现代国际象棋发动机的设计。除了开创性的Alphago,Alphago Zero和Alphazero我们涵盖Leela Chess Zero,Fat Fritz,Fat Fritz 2以及有效更新的神经网络(NNUE)以及MAIA。第5章是关于实施微型α。 Shexapawn是国际象棋的简约版本,被用作为此的示例。 Minimax搜索可以解决六ap峰,并产生了监督学习的培训位置。然后,作为比较,实施了类似Alphazero的训练回路,其中通过自我游戏进行训练与强化学习结合在一起。最后,比较了类似α的培训和监督培训。
translated by 谷歌翻译
语言是协调问题的强大解决方案:他们提供了稳定的,有关我们所说的单词如何对应于我们头脑中的信仰和意图的共同期望。然而,在变量和非静止社会环境中的语言使用需要语言表征来灵活:旧词在飞行中获取新的临时或合作伙伴特定含义。在本文中,我们介绍了柴(通过推理的连续分层适应),一个分层贝叶斯的协调理论和会议组织,旨在在这两个基本观察之间调和长期张力。我们认为,沟通的中央计算问题不仅仅是传输,如在经典配方中,而是在多个时间尺度上持续学习和适应。合作伙伴特定的共同点迅速出现在数型互动中的社会推论中,而社群范围内的社会公约是稳定的前锋,这些前锋已经抽象出与多个合作伙伴的互动。我们展示了新的实证数据,展示了我们的模型为多个现象提供了对先前账户挑战的计算基础:(1)与同一合作伙伴的重复互动的更有效的参考表达的融合(2)将合作伙伴特定的共同基础转移到陌生人,并(3)交际范围的影响最终会形成。
translated by 谷歌翻译
In many real-world settings agents engage in strategic interactions with multiple opposing agents who can employ a wide variety of strategies. The standard approach for designing agents for such settings is to compute or approximate a relevant game-theoretic solution concept such as Nash equilibrium and then follow the prescribed strategy. However, such a strategy ignores any observations of opponents' play, which may indicate shortcomings that can be exploited. We present an approach for opponent modeling in multiplayer imperfect-information games where we collect observations of opponents' play through repeated interactions. We run experiments against a wide variety of real opponents and exact Nash equilibrium strategies in three-player Kuhn poker and show that our algorithm significantly outperforms all of the agents, including the exact Nash equilibrium strategies.
translated by 谷歌翻译