When robots interact with humans in homes, roads, or factories the human's behavior often changes in response to the robot. Non-stationary humans are challenging for robot learners: actions the robot has learned to coordinate with the original human may fail after the human adapts to the robot. In this paper we introduce an algorithmic formalism that enables robots (i.e., ego agents) to co-adapt alongside dynamic humans (i.e., other agents) using only the robot's low-level states, actions, and rewards. A core challenge is that humans not only react to the robot's behavior, but the way in which humans react inevitably changes both over time and between users. To deal with this challenge, our insight is that -- instead of building an exact model of the human -- robots can learn and reason over high-level representations of the human's policy and policy dynamics. Applying this insight we develop RILI: Robustly Influencing Latent Intent. RILI first embeds low-level robot observations into predictions of the human's latent strategy and strategy dynamics. Next, RILI harnesses these predictions to select actions that influence the adaptive human towards advantageous, high reward behaviors over repeated interactions. We demonstrate that -- given RILI's measured performance with users sampled from an underlying distribution -- we can probabilistically bound RILI's expected performance across new humans sampled from the same distribution. Our simulated experiments compare RILI to state-of-the-art representation and reinforcement learning baselines, and show that RILI better learns to coordinate with imperfect, noisy, and time-varying agents. Finally, we conduct two user studies where RILI co-adapts alongside actual humans in a game of tag and a tower-building task. See videos of our user studies here: https://youtu.be/WYGO5amDXbQ
translated by 谷歌翻译
当机器人与人类伴侣互动时,这些合作伙伴通常会因机器人而改变其行为。一方面,这是具有挑战性的,因为机器人必须学会与动态合作伙伴进行协调。但是,另一方面 - 如果机器人理解这些动态 - 它可以利用自己的行为,影响人类,并指导团队进行有效的协作。先前的研究使机器人能够学会影响其他机器人或模拟药物。在本文中,我们将这些学习方法扩展到现在影响人类。使人类特别难影响的原因是 - 人类不仅对机器人做出反应 - 而且单个用户对机器人的反应可能会随着时间而改变,而且不同的人类会以不同的方式对相同的机器人行为做出反应。因此,我们提出了一种强大的方法,该方法学会影响不断变化的伴侣动态。我们的方法首先在重复互动中与一组合作伙伴进行训练,并学会根据以前的状态,行动和奖励来预测当前伙伴的行为。接下来,我们通过对机器人与原始合作伙伴学习的轨迹进行采样轨迹迅速适应了新合作伙伴,然后利用这些现有行为来影响新的合作伙伴动态。我们将最终的算法与跨模拟环境和用户研究进行比较,并在其中进行了机器人和参与者协作建造塔楼的用户研究。我们发现,即使合作伙伴遵循新的或意外的动态,我们的方法也优于替代方案。用户研究的视频可在此处获得:https://youtu.be/lyswm8an18g
translated by 谷歌翻译
当人类与机器人互动时,不可避免地会影响。考虑一辆在人类附近行驶的自动驾驶汽车:自动驾驶汽车的速度和转向将影响人类驾驶方式。先前的作品开发了框架,使机器人能够影响人类对所需行为的影响。但是,尽管这些方法在短期(即前几个人类机器人相互作用)中有效,但我们在这里探索了长期影响(即同一人与机器人之间的重复相互作用)。我们的主要见解是,人类是动态的:人们适应机器人,一旦人类学会预见机器人的行为,现在影响力的行为可能会失败。有了这种见解,我们在实验上证明了一种普遍的游戏理论形式主义,用于产生有影响力的机器人行为,而不是重复互动的有效性降低。接下来,我们为Stackelberg游戏提出了三个修改,这些游戏使机器人的政策具有影响力和不可预测性。我们最终在模拟和用户研究中测试了这些修改:我们的结果表明,故意使他们的行为更难预期的机器人能够更好地维持对长期互动的影响。在此处查看视频:https://youtu.be/ydo83cgjz2q
translated by 谷歌翻译
人类可以利用身体互动来教机器人武器。这种物理互动取决于任务,用户以及机器人到目前为止所学的内容。最先进的方法专注于从单一模态学习,或者假设机器人具有有关人类预期任务的先前信息,从而结合了多个互动类型。相比之下,在本文中,我们介绍了一种算法形式主义,该算法从演示,更正和偏好中学习。我们的方法对人类想要教机器人的任务没有任何假设。取而代之的是,我们通过将人类的输入与附近的替代方案进行比较,从头开始学习奖励模型。我们首先得出损失函数,该功能训练奖励模型的合奏,以匹配人类的示范,更正和偏好。反馈的类型和顺序取决于人类老师:我们使机器人能够被动地或积极地收集此反馈。然后,我们应用受约束的优化将我们学习的奖励转换为所需的机器人轨迹。通过模拟和用户研究,我们证明,与现有基线相比,我们提出的方法更准确地从人体互动中学习了操纵任务,尤其是当机器人面临新的或意外的目标时。我们的用户研究视频可在以下网址获得:https://youtu.be/fsujstyveku
translated by 谷歌翻译
最先进的多机构增强学习(MARL)方法为各种复杂问题提供了有希望的解决方案。然而,这些方法都假定代理执行同步的原始操作执行,因此它们不能真正可扩展到长期胜利的真实世界多代理/机器人任务,这些任务固有地要求代理/机器人以异步的理由,涉及有关高级动作选择的理由。不同的时间。宏观行动分散的部分可观察到的马尔可夫决策过程(MACDEC-POMDP)是在完全合作的多代理任务中不确定的异步决策的一般形式化。在本论文中,我们首先提出了MacDec-Pomdps的一组基于价值的RL方法,其中允许代理在三个范式中使用宏观成果功能执行异步学习和决策:分散学习和控制,集中学习,集中学习和控制,以及分散执行的集中培训(CTDE)。在上述工作的基础上,我们在三个训练范式下制定了一组基于宏观行动的策略梯度算法,在该训练范式下,允许代理以异步方式直接优化其参数化策略。我们在模拟和真实的机器人中评估了我们的方法。经验结果证明了我们在大型多代理问题中的方法的优势,并验证了我们算法在学习具有宏观actions的高质量和异步溶液方面的有效性。
translated by 谷歌翻译
While reinforcement learning (RL) has become a more popular approach for robotics, designing sufficiently informative reward functions for complex tasks has proven to be extremely difficult due their inability to capture human intent and policy exploitation. Preference based RL algorithms seek to overcome these challenges by directly learning reward functions from human feedback. Unfortunately, prior work either requires an unreasonable number of queries implausible for any human to answer or overly restricts the class of reward functions to guarantee the elicitation of the most informative queries, resulting in models that are insufficiently expressive for realistic robotics tasks. Contrary to most works that focus on query selection to \emph{minimize} the amount of data required for learning reward functions, we take an opposite approach: \emph{expanding} the pool of available data by viewing human-in-the-loop RL through the more flexible lens of multi-task learning. Motivated by the success of meta-learning, we pre-train preference models on prior task data and quickly adapt them for new tasks using only a handful of queries. Empirically, we reduce the amount of online feedback needed to train manipulation policies in Meta-World by 20$\times$, and demonstrate the effectiveness of our method on a real Franka Panda Robot. Moreover, this reduction in query-complexity allows us to train robot policies from actual human users. Videos of our results and code can be found at https://sites.google.com/view/few-shot-preference-rl/home.
translated by 谷歌翻译
元强化学习(RL)方法可以使用比标准RL少的数据级的元培训策略,但元培训本身既昂贵又耗时。如果我们可以在离线数据上进行元训练,那么我们可以重复使用相同的静态数据集,该数据集将一次标记为不同任务的奖励,以在元测试时间适应各种新任务的元训练策略。尽管此功能将使Meta-RL成为现实使用的实用工具,但离线META-RL提出了除在线META-RL或标准离线RL设置之外的其他挑战。 Meta-RL学习了一种探索策略,该策略收集了用于适应的数据,并元培训策略迅速适应了新任务的数据。由于该策略是在固定的离线数据集上进行了元训练的,因此当适应学识渊博的勘探策略收集的数据时,它可能表现得不可预测,这与离线数据有系统地不同,从而导致分布变化。我们提出了一种混合脱机元元素算法,该算法使用带有奖励的脱机数据来进行自适应策略,然后收集其他无监督的在线数据,而无需任何奖励标签来桥接这一分配变化。通过不需要在线收集的奖励标签,此数据可以便宜得多。我们将我们的方法比较了在模拟机器人的运动和操纵任务上进行离线元rl的先前工作,并发现使用其他无监督的在线数据收集可以显着提高元训练政策的自适应能力,从而匹配完全在线的表现。在一系列具有挑战性的域上,需要对新任务进行概括。
translated by 谷歌翻译
Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
虽然多代理学习的进步使得能够培训越来越复杂的代理商,但大多数现有技术都产生了最终政策,该政策不旨在适应新的合作伙伴的战略。但是,我们希望我们的AI代理商根据周围的战略来调整他们的战略。在这项工作中,我们研究了有条件的多代理模仿学习问题,我们可以在培训时间访问联合轨迹演示,我们必须在测试时间与新合作伙伴进行互动并适应新伙伴。这种环境是具有挑战性的,因为我们必须推断新的合作伙伴的战略并使我们的政策适应该战略,而不是了解环境奖励或动态。我们将该条件多代理模仿学习的问题正式化,提出了一种解决可扩展性和数据稀缺的困难的新方法。我们的主要洞察力是,多种代理游戏的合作伙伴的变化通常很高,并且可以通过低秩子空间来表示。利用张量分解的工具,我们的模型在EGO和合作伙伴代理战略上学习了低秩子空间,然后是infers并通过插值在子空间中互动到新的合作伙伴策略。我们用混合协作任务的实验,包括匪徒,粒子和Hanabi环境。此外,我们还测试我们对超级烹饪游戏的用户学习中的真实人体合作​​伙伴的条件政策。与基线相比,我们的模型更好地适应新的合作伙伴,并强大地处理各种设置,从离散/持续的动作和静态/在线评估与AI / Lean Partners。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
Adequately assigning credit to actions for future outcomes based on their contributions is a long-standing open challenge in Reinforcement Learning. The assumptions of the most commonly used credit assignment method are disadvantageous in tasks where the effects of decisions are not immediately evident. Furthermore, this method can only evaluate actions that have been selected by the agent, making it highly inefficient. Still, no alternative methods have been widely adopted in the field. Hindsight Credit Assignment is a promising, but still unexplored candidate, which aims to solve the problems of both long-term and counterfactual credit assignment. In this thesis, we empirically investigate Hindsight Credit Assignment to identify its main benefits, and key points to improve. Then, we apply it to factored state representations, and in particular to state representations based on the causal structure of the environment. In this setting, we propose a variant of Hindsight Credit Assignment that effectively exploits a given causal structure. We show that our modification greatly decreases the workload of Hindsight Credit Assignment, making it more efficient and enabling it to outperform the baseline credit assignment method on various tasks. This opens the way to other methods based on given or learned causal structures.
translated by 谷歌翻译
我们如何才能训练辅助人机接口(例如,基于肌电图的肢体假体),将用户的原始命令信号转换为机器人或计算机的动作,如果没有事先映射,我们不能要求用户进行监督动作标签或奖励反馈的形式,我们对用户试图完成的任务没有事先了解?本文中的关键想法是,无论任务如何,当接口更直观时,用户的命令就会不那么嘈杂。我们将这一想法形式化为一个完全无监督的目标,以优化接口:用户的命令信号与环境中的诱导状态过渡之间的相互信息。为了评估此相互信息得分是否可以区分有效的界面和无效界面,我们对540K的示例进行了观察性研究,该示例的用户操作各种键盘和眼睛凝视接口,用于打字,控制模拟机器人和玩视频游戏。结果表明,我们的共同信息得分可预测各个领域中的基础任务完成指标,而Spearman的平均等级相关性为0.43。除了对现有接口的离线评估外,我们还使用无监督的目标从头开始学习接口:我们随机初始化接口,让用户尝试使用接口执行其所需的任务,测量相互信息得分并更新接口通过强化学习最大化相互信息。我们通过用户研究与12名参与者进行用户研究评估我们的方法,他们使用扰动的鼠标执行2D光标控制任务,并使用手势使用手势的一个用户玩《 Lunar Lander》游戏的实验。结果表明,我们可以在30分钟内从头开始学习一个接头,无需任何用户监督或任务的先验知识。
translated by 谷歌翻译
当人类彼此合作时,他们经常通过观察他人来做出决定,并考虑到他们的行为可能在整个团队中的后果,而不是贪婪地做到最好的事情。我们希望我们的AI代理商通过捕获其合作伙伴的模型来有效地以类似的方式协作。在这项工作中,我们提出并分析了分散的多武装强盗(MAB)问题,耦合奖励作为更一般的多代理协作的抽象。我们展示了当申请分散的强盗团队时单代理最佳MAB算法的NA \“IVE扩展失败。相反,我们提出了一个合作伙伴感知策略,用于联合连续决策,这些策略扩展了众所周知的单王子的上置信度算法。我们分析表明,我们的拟议战略达到了对数遗憾,并提供了涉及人类AI和人机协作的广泛实验,以验证我们的理论发现。我们的结果表明,拟议的合作伙伴感知策略优于其他已知方法,以及我们的人类主题研究表明人类宁愿与实施我们合作伙伴感知战略的AI代理商合作。
translated by 谷歌翻译
临时团队合作是设计可以与新队友合作而无需事先协调的研究问题的研究问题。这项调查做出了两个贡献:首先,它提供了对临时团队工作问题不同方面的结构化描述。其次,它讨论了迄今为止该领域取得的进展,并确定了临时团队工作中需要解决的直接和长期开放问题。
translated by 谷歌翻译
随着我们日常环境中机器人的存在越来越多,提高社交技能至关重要。尽管如此,社会机器人技术仍然面临许多挑战。一种瓶颈是,由于社会规范的强烈取决于环境,因此需要经常适应机器人行为。例如,与办公室的工人相比,机器人应更仔细地在医院的患者周围进行仔细的导航。在这项工作中,我们将元强化学习(META-RL)作为潜在解决方案进行了研究。在这里,机器人行为是通过强化学习来学习的,需要选择奖励功能,以便机器人学习适合给定环境的行为。我们建议使用一种变异元过程,该过程迅速使机器人的行为适应新的奖励功能。结果,给定一个新的环境,可以快速评估不同的奖励功能,并选择适当的奖励功能。该过程学习奖励函数的矢量表示和可以在这种表示形式下进行条件的元政策。从新的奖励函数中进行观察,该过程确定了其表示形式,并条件元元素对其进行了条件。在研究程序的功能时,我们意识到它遭受了后塌陷的困扰,在表示表示中只有一个尺寸的子集编码有用的信息,从而导致性能降低。我们的第二个贡献是径向基函数(RBF)层,部分减轻了这种负面影响。 RBF层将表示形式提升到较高的维空间,这对于元容器更容易利用。我们证明了RBF层的兴趣以及在四个机器人模拟任务上对社会机器人技术的使用元素使用。
translated by 谷歌翻译
安全是自主系统的关键组成部分,仍然是现实世界中要使用的基于学习的政策的挑战。特别是,由于不安全的行为,使用强化学习学习的政策通常无法推广到新的环境。在本文中,我们提出了SIM到LAB到实验室,以弥合现实差距,并提供概率保证的安全意见政策分配。为了提高安全性,我们采用双重政策设置,其中通过累积任务奖励对绩效政策进行培训,并通过根据汉密尔顿 - 雅各布(Hamilton-Jacobi)(HJ)达到可达性分析来培训备用(安全)政策。在SIM到LAB转移中,我们采用监督控制方案来掩盖探索过程中不安全的行动;在实验室到实验室的转移中,我们利用大约正确的(PAC) - 贝斯框架来提供有关在看不见环境中政策的预期性能和安全性的下限。此外,从HJ可达性分析继承,界限说明了每个环境中最坏情况安全性的期望。我们从经验上研究了两种类型的室内环境中的自我视频导航框架,具有不同程度的光真实性。我们还通过具有四足机器人的真实室内空间中的硬件实验来证明强大的概括性能。有关补充材料,请参见https://sites.google.com/princeton.edu/sim-to-lab-to-real。
translated by 谷歌翻译
This paper surveys the eld of reinforcement learning from a computer-science perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the eld and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trial-and-error interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but di ers considerably in the details and in the use of the word \reinforcement." The paper discusses central issues of reinforcement learning, including trading o exploration and exploitation, establishing the foundations of the eld via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
translated by 谷歌翻译