Humans have internal models of robots (like their physical capabilities), the world (like what will happen next), and their tasks (like a preferred goal). However, human internal models are not always perfect: for example, it is easy to underestimate a robot's inertia. Nevertheless, these models change and improve over time as humans gather more experience. Interestingly, robot actions influence what this experience is, and therefore influence how people's internal models change. In this work we take a step towards enabling robots to understand the influence they have, leverage it to better assist people, and help human models more quickly align with reality. Our key idea is to model the human's learning as a nonlinear dynamical system which evolves the human's internal model given new observations. We formulate a novel optimization problem to infer the human's learning dynamics from demonstrations that naturally exhibit human learning. We then formalize how robots can influence human learning by embedding the human's learning dynamics model into the robot planning problem. Although our formulations provide concrete problem statements, they are intractable to solve in full generality. We contribute an approximation that sacrifices the complexity of the human internal models we can represent, but enables robots to learn the nonlinear dynamics of these internal models. We evaluate our inference and planning methods in a suite of simulated environments and an in-person user study, where a 7DOF robotic arm teaches participants to be better teleoperators. While influencing human learning remains an open problem, our results demonstrate that this influence is possible and can be helpful in real human-robot interaction.
translated by 谷歌翻译
有效推论是一种数学框架,它起源于计算神经科学,作为大脑如何实现动作,感知和学习的理论。最近,已被证明是在不确定性下存在国家估算和控制问题的有希望的方法,以及一般的机器人和人工代理人的目标驱动行为的基础。在这里,我们审查了最先进的理论和对国家估计,控制,规划和学习的积极推断的实现;描述当前的成就,特别关注机器人。我们展示了相关实验,以适应,泛化和稳健性而言说明其潜力。此外,我们将这种方法与其他框架联系起来,并讨论其预期的利益和挑战:使用变分贝叶斯推理具有功能生物合理性的统一框架。
translated by 谷歌翻译
人类可以利用身体互动来教机器人武器。这种物理互动取决于任务,用户以及机器人到目前为止所学的内容。最先进的方法专注于从单一模态学习,或者假设机器人具有有关人类预期任务的先前信息,从而结合了多个互动类型。相比之下,在本文中,我们介绍了一种算法形式主义,该算法从演示,更正和偏好中学习。我们的方法对人类想要教机器人的任务没有任何假设。取而代之的是,我们通过将人类的输入与附近的替代方案进行比较,从头开始学习奖励模型。我们首先得出损失函数,该功能训练奖励模型的合奏,以匹配人类的示范,更正和偏好。反馈的类型和顺序取决于人类老师:我们使机器人能够被动地或积极地收集此反馈。然后,我们应用受约束的优化将我们学习的奖励转换为所需的机器人轨迹。通过模拟和用户研究,我们证明,与现有基线相比,我们提出的方法更准确地从人体互动中学习了操纵任务,尤其是当机器人面临新的或意外的目标时。我们的用户研究视频可在以下网址获得:https://youtu.be/fsujstyveku
translated by 谷歌翻译
When robots interact with humans in homes, roads, or factories the human's behavior often changes in response to the robot. Non-stationary humans are challenging for robot learners: actions the robot has learned to coordinate with the original human may fail after the human adapts to the robot. In this paper we introduce an algorithmic formalism that enables robots (i.e., ego agents) to co-adapt alongside dynamic humans (i.e., other agents) using only the robot's low-level states, actions, and rewards. A core challenge is that humans not only react to the robot's behavior, but the way in which humans react inevitably changes both over time and between users. To deal with this challenge, our insight is that -- instead of building an exact model of the human -- robots can learn and reason over high-level representations of the human's policy and policy dynamics. Applying this insight we develop RILI: Robustly Influencing Latent Intent. RILI first embeds low-level robot observations into predictions of the human's latent strategy and strategy dynamics. Next, RILI harnesses these predictions to select actions that influence the adaptive human towards advantageous, high reward behaviors over repeated interactions. We demonstrate that -- given RILI's measured performance with users sampled from an underlying distribution -- we can probabilistically bound RILI's expected performance across new humans sampled from the same distribution. Our simulated experiments compare RILI to state-of-the-art representation and reinforcement learning baselines, and show that RILI better learns to coordinate with imperfect, noisy, and time-varying agents. Finally, we conduct two user studies where RILI co-adapts alongside actual humans in a game of tag and a tower-building task. See videos of our user studies here: https://youtu.be/WYGO5amDXbQ
translated by 谷歌翻译
当从人类行为中推断出奖励功能(无论是演示,比较,物理校正或电子停靠点)时,它已证明对人类进行建模作为做出嘈杂的理性选择,并具有“合理性系数”,以捕获多少噪声或熵我们希望看到人类的行为。无论人类反馈的类型或质量如何,许多现有作品都选择修复此系数。但是,在某些情况下,进行演示可能要比回答比较查询要困难得多。在这种情况下,我们应该期望在示范中看到比比较中更多的噪音或次级临时性,并且应该相应地解释反馈。在这项工作中,我们提倡,将每种反馈类型的实际数据中的理性系数扎根,而不是假设默认值,对奖励学习具有重大的积极影响。我们在模拟反馈以及用户研究的实验中测试了这一点。我们发现,从单一反馈类型中学习时,高估人类理性可能会对奖励准确性和遗憾产生可怕的影响。此外,我们发现合理性层面会影响每种反馈类型的信息性:令人惊讶的是,示威并不总是最有用的信息 - 当人类的行为非常卑鄙时,即使在合理性水平相同的情况下,比较实际上就变得更加有用。 。此外,当机器人确定要要求的反馈类型时,它可以通过准确建模每种类型的理性水平来获得很大的优势。最终,我们的结果强调了关注假定理性级别的重要性,不仅是在从单个反馈类型中学习时,尤其是当代理商从多种反馈类型中学习时,尤其是在学习时。
translated by 谷歌翻译
在本文中,我们研究了不确定性下的顺序决策任务中可读性的概念。以前的作品将易读性扩展到了机器人运动以外的方案,要么集中在确定性设置上,要么在计算上太昂贵。我们提出的称为POL-MDP的方法能够处理不确定性,同时保持计算障碍。在几种不同复杂性的模拟场景中,我们建立了反对最新方法的方法的优势。我们还展示了将我们的清晰政策用作反向加强学习代理的示范,并根据最佳政策建立了他们的优越性。最后,我们通过用户研究评估计算政策的可读性,在该研究中,要求人们通过观察其行动来推断移动机器人的目标。
translated by 谷歌翻译
嘈杂的传感,不完美的控制和环境变化是许多现实世界机器人任务的定义特征。部分可观察到的马尔可夫决策过程(POMDP)提供了一个原则上的数学框架,用于建模和解决不确定性下的机器人决策和控制任务。在过去的十年中,它看到了许多成功的应用程序,涵盖了本地化和导航,搜索和跟踪,自动驾驶,多机器人系统,操纵和人类机器人交互。这项调查旨在弥合POMDP模型的开发与算法之间的差距,以及针对另一端的不同机器人决策任务的应用。它分析了这些任务的特征,并将它们与POMDP框架的数学和算法属性联系起来,以进行有效的建模和解决方案。对于从业者来说,调查提供了一些关键任务特征,以决定何时以及如何成功地将POMDP应用于机器人任务。对于POMDP算法设计师,该调查为将POMDP应用于机器人系统的独特挑战提供了新的见解,并指出了有希望的新方向进行进一步研究。
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
Inferring reward functions from human behavior is at the center of value alignment - aligning AI objectives with what we, humans, actually want. But doing so relies on models of how humans behave given their objectives. After decades of research in cognitive science, neuroscience, and behavioral economics, obtaining accurate human models remains an open research topic. This begs the question: how accurate do these models need to be in order for the reward inference to be accurate? On the one hand, if small errors in the model can lead to catastrophic error in inference, the entire framework of reward learning seems ill-fated, as we will never have perfect models of human behavior. On the other hand, if as our models improve, we can have a guarantee that reward accuracy also improves, this would show the benefit of more work on the modeling side. We study this question both theoretically and empirically. We do show that it is unfortunately possible to construct small adversarial biases in behavior that lead to arbitrarily large errors in the inferred reward. However, and arguably more importantly, we are also able to identify reasonable assumptions under which the reward inference error can be bounded linearly in the error in the human model. Finally, we verify our theoretical insights in discrete and continuous control tasks with simulated and human data.
translated by 谷歌翻译
假设人类(大约)理性使机器人能够通过观察人类行为来推断奖励功能。但人们展出了各种各样的非理性,我们与这项工作的目标是更好地了解他们可以对奖励推论的影响。研究这种效果的挑战是存在许多类型的非理性,具有不同程度的数学形式化。因此,通过改变Bellman Optimaly公式,使用本框架来研究这些框架会如何影响推理的框架,从而通过改变MDP的语言。我们发现错误地建模一个系统地造型的人类,因为嘈杂的理性比正确捕获这些偏差更糟糕 - 这么多,因此可以更好地跳过推动并坚持先前!更重要的是,我们表明,在正确建模时,一个非理性人类可以传达有关奖励的更多信息,而不是完全合理的人体。也就是说,如果机器人具有正确的人类非理性模型,如果人类是理性的,它可以使推论比它能够更强大。非理性基本上有助于而不是阻碍奖励推断,但需要正确占用。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
为了与机器人合作,我们必须能够理解他们的决策。人类自然会通过类似于逆增强学习(IRL)的方式来推理其可观察到的行为,从而推断出其他代理商的信念和欲望。因此,机器人可以通过提供对人类学习者的IRL提供信息的示威来传达他们的信念和欲望。一项内容丰富的演示是,鉴于他们当前对机器人决策的理解,与学习者对机器人将要做的事情的期望有很大差异。但是,标准IRL并未对学习者的现有期望进行建模,因此不能执行这种反事实推理。我们建议将学习者对机器人决策的当前理解纳入我们的人类IRL模型中,以便机器人可以选择最大化人类理解的演示。我们还提出了一种新颖的措施,以估计人类在看不见环境中预测机器人行为的实例的难度。一项用户研究发现,我们的测试难度与人类绩效和信心息息相关。有趣的是,选择人类的信念和反事实时,选择示范会在易于测试中降低人类绩效,但在困难测试中提高了性能,从而提供了有关如何最好地利用此类模型的见解。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
在人类居住的环境中使用机器人的挑战是设计对人类互动引起的扰动且鲁棒的设计行为。我们的想法是用内在动机(IM)拟订机器人,以便它可以处理新的情况,并作为人类的真正社交,因此对人类互动伙伴感兴趣。人机互动(HRI)实验主要关注脚本或远程机器人,这是模拟特性,如IM来控制孤立的行为因素。本文介绍了一个“机器人学家”的研究设计,允许比较自主生成的行为彼此,而且首次评估机器人中基于IM的生成行为的人类感知。我们在受试者内部用户学习(n = 24),参与者与具有不同行为制度的完全自主的Sphero BB8机器人互动:一个实现自适应,本质上动机的行为,另一个是反应性的,但不是自适应。机器人及其行为是故意最小的,以专注于IM诱导的效果。与反应基线行为相比,相互作用后问卷的定量分析表明对尺寸“温暖”的显着提高。温暖被认为是人类社会认知中社会态度形成的主要维度。一种被认为是温暖(友好,值得信赖的)的人体验更积极的社交互动。
translated by 谷歌翻译
人类代理团队,这是一个问题,其中人类和自治机构合作实现一项任务,是人类AI协作的典型。为有效的合作,人类希望有一个有效的计划,而是在现实的情况下,他们可能难以计算由于认知限制的最佳计划。在这种情况下,具有许多计算资源的代理的指导可能是有用的。但是,如果代理人明确指导人类行为,人类可能会觉得他们已经失去了自主,并由代理商控制。因此,我们调查了通过代理人行为提供的隐性指导。通过这种指导,代理商以一种方式使人类能够易于找到合作任务的有效计划,然后可以改善计划。由于人类自愿改善了他们的计划,他或她保持自治。我们通过将贝叶斯思想理论集成到现有的协作规划算法中并通过行为实验进行了模拟了一个具有隐含指导,并通过隐性指导的行为实验证明了使人们能够在改善计划和保留自治之间保持平衡。
translated by 谷歌翻译
当机器人与人类伴侣互动时,这些合作伙伴通常会因机器人而改变其行为。一方面,这是具有挑战性的,因为机器人必须学会与动态合作伙伴进行协调。但是,另一方面 - 如果机器人理解这些动态 - 它可以利用自己的行为,影响人类,并指导团队进行有效的协作。先前的研究使机器人能够学会影响其他机器人或模拟药物。在本文中,我们将这些学习方法扩展到现在影响人类。使人类特别难影响的原因是 - 人类不仅对机器人做出反应 - 而且单个用户对机器人的反应可能会随着时间而改变,而且不同的人类会以不同的方式对相同的机器人行为做出反应。因此,我们提出了一种强大的方法,该方法学会影响不断变化的伴侣动态。我们的方法首先在重复互动中与一组合作伙伴进行训练,并学会根据以前的状态,行动和奖励来预测当前伙伴的行为。接下来,我们通过对机器人与原始合作伙伴学习的轨迹进行采样轨迹迅速适应了新合作伙伴,然后利用这些现有行为来影响新的合作伙伴动态。我们将最终的算法与跨模拟环境和用户研究进行比较,并在其中进行了机器人和参与者协作建造塔楼的用户研究。我们发现,即使合作伙伴遵循新的或意外的动态,我们的方法也优于替代方案。用户研究的视频可在此处获得:https://youtu.be/lyswm8an18g
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译
自由能原理及其必然的积极推论构成了一种生物启发的理论,该理论假设生物学作用保留在一个受限制的世界首选状态中,即它们最小化自由能。根据这一原则,生物学家学习了世界的生成模型和未来的计划行动,该模型将使代理保持稳态状态,以满足其偏好。该框架使自己在计算机中实现,因为它理解了使其计算负担得起的重要方面,例如变异推断和摊销计划。在这项工作中,我们研究了深度学习的工具,以设计和实现基于主动推断的人造代理,对自由能原理进行深入学习的呈现,调查工作与机器学习和主动推理领域相关,以及讨论实施过程中涉及的设计选择。该手稿探究了积极推理框架的新观点,将其理论方面扎根于更务实的事务中,为活跃推理的新手提供了实用指南,并为深度学习从业人员的起点提供了研究,以调查自由能源原则的实施。
translated by 谷歌翻译
在复杂的协作任务上共同努力需要代理商协调他们的行为。在实际交互之前明确或完全执行此操作并不总是可能也不充分。代理人还需要不断了解他人的当前行动,并迅速适应自己的行为。在这里,我们调查我们称之为信仰共鸣的精神状态(意图,目标)的效率,自动协调过程如何导致协作的解决问题。我们为协作剂(HAICA)提出了分层有源推断的模型。它将高效的贝叶斯理论与基于预测处理和主动推断的感知动作系统相结合。通过让一个药物的推断精神状态影响另一个代理人的预测信念来实现信仰共振,从而实现了他自己的目标和意图。这样,推断的精神状态影响了代理人自己的任务行为,没有明确的协作推理。我们在超核域中实施和评估此模型,其中两个代理具有不同程度的信仰共振组合,以满足膳食订单。我们的结果表明,基于HAICA的代理商实现了与最近现有技术方法相当的团队表现,同时产生了更低的计算成本。我们还表明,信仰共振在环境中特别有益,代理商是对环境的不对称知识。结果表明,信仰共振和有效推断允许快速高效的代理协调,因此可以用作合作认知剂的结构块。
translated by 谷歌翻译
由于数据量增加,金融业的快速变化已经彻底改变了数据处理和数据分析的技术,并带来了新的理论和计算挑战。与古典随机控制理论和解决财务决策问题的其他分析方法相比,解决模型假设的财务决策问题,强化学习(RL)的新发展能够充分利用具有更少模型假设的大量财务数据并改善复杂的金融环境中的决策。该调查纸目的旨在审查最近的资金途径的发展和使用RL方法。我们介绍了马尔可夫决策过程,这是许多常用的RL方法的设置。然后引入各种算法,重点介绍不需要任何模型假设的基于价值和基于策略的方法。连接是用神经网络进行的,以扩展框架以包含深的RL算法。我们的调查通过讨论了这些RL算法在金融中各种决策问题中的应用,包括最佳执行,投资组合优化,期权定价和对冲,市场制作,智能订单路由和Robo-Awaring。
translated by 谷歌翻译