从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we report a new method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby we leverage fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than ever before, and recovering from falling even in complex configurations.
translated by 谷歌翻译
现在,最先进的强化学习能够在模拟中学习双皮亚机器人的多功能运动,平衡和推送能力。然而,现实差距大多被忽略了,模拟结果几乎不会转移到真实硬件上。在实践中,它是不成功的,因为物理学过度简化,硬件限制被忽略,或者不能保证规律性,并且可能会发生意外的危险运动。本文提出了一个强化学习框架,该框架能够学习以平稳的开箱即用向现实的转移,仅需要瞬时的本体感受观察,可以学习强大的站立式恢复。通过结合原始的终止条件和政策平滑度调节,我们使用没有记忆力或观察历史的政策实现了稳定的学习,SIM转移和安全性。然后使用奖励成型来提供有关如何保持平衡的见解。我们展示了其在下LIMB医学外骨骼Atalante中的现实表现。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
基于腿部机器人的基于深的加固学习(RL)控制器表现出令人印象深刻的鲁棒性,可在不同的环境中为多个机器人平台行走。为了在现实世界中启用RL策略为类人类机器人应用,至关重要的是,建立一个可以在2D和3D地形上实现任何方向行走的系统,并由用户命令控制。在本文中,我们通过学习遵循给定步骤序列的政策来解决这个问题。该政策在一组程序生成的步骤序列(也称为脚步计划)的帮助下进行培训。我们表明,仅将即将到来的2个步骤喂入政策就足以实现全向步行,安装到位,站立和攀登楼梯。我们的方法采用课程学习对地形的复杂性,并规避了参考运动或预训练的权重的需求。我们证明了我们提出的方法在Mujoco仿真环境中学习2个新机器人平台的RL策略-HRP5P和JVRC -1-。可以在线获得培训和评估的代码。
translated by 谷歌翻译
深度学习的兴起导致机器人研究中的范式转变,有利于需要大量数据的方法。在物理平台上生成这样的数据集是昂贵的。因此,最先进的方法在模拟中学习,其中数据生成快速以及廉价并随后将知识转移到真实机器人(SIM-to-Real)。尽管变得越来越真实,但所有模拟器都是基于模型的施工,因此不可避免地不完善。这提出了如何修改模拟器以促进学习机器人控制政策的问题,并克服模拟与现实之间的不匹配,通常称为“现实差距”。我们对机器人学的SIM-Teal研究提供了全面的审查,专注于名为“域随机化”的技术,这是一种从随机仿真学习的方法。
translated by 谷歌翻译
我们专注于开发Quadrupedal机器人节能控制器的问题。动物可以以不同的速度积极切换Gaits以降低其能量消耗。在本文中,我们设计了一个分层学习框架,其中独特的运动遗传仪和自然步态过渡自动出现,其能量最小化的简单奖励。我们使用进化策略来培训一个高级步态政策,指定每只脚的步态图案,而低级凸MPC控制器优化电机命令,以便机器人可以使用该步态图案以所需的速度行走。我们在四足机器人上测试我们的学习框架,并展示了自动步态过渡,从步行到小跑和飞行,因为机器人增加了速度。我们表明学习的等级控制器在广泛的运动速度范围内消耗的能量要少于基线控制器。
translated by 谷歌翻译
深度强化学习(Deep RL)已成为开发腿部机器人控制器的有效工具。但是,香草深RL通常需要大量的训练样本,并且对于实现强大的行为不可行。取而代之的是,研究人员通过合并人类专家的知识来调查一种新颖的政策架构,例如调节轨迹发生器(PMTG)的政策。该体系结构通过组合参数轨迹生成器(TG)和反馈策略网络来构建一个经常性的控制循环,以实现更强大的行为。为了利用人类专家的知识,但消除了耗时的互动教学,研究人员调查了一种新颖的架构,策略调节轨迹发生器(PMTG),该建筑通过结合参数轨迹生成器(TG)和反馈策略来构建经常性的控制循环网络使用直观的先验知识来实现​​更强大的行为。在这项工作中,我们建议通过使用接触感知的有限状态机器(FSM)代替TG来调整有限状态机(PM-FSM),从而为每条腿提供更灵活的控制。与TGS相比,FSM在每个腿部运动生成器上提供高级管理,并实现灵活的状态安排,这使得学习的行为不那么容易受到看不见的扰动或具有挑战性的地形。本发明为政策提供了明确的联系事件的概念,以协商意外的扰动。我们证明,在模拟机器人和真实的机器人上,所提出的架构可以在各种情况下(例如具有挑战性的地形或外部扰动)实现更强大的行为。补充视频可以在以下网址找到:https://youtu.be/78cbomqtkjq。
translated by 谷歌翻译
With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks where (D)RL methods have been employed, while addressing key computational challenges in real world deployment of autonomous driving agents. It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms. The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
translated by 谷歌翻译
深度强化学习是在不需要领域知识的不受控制环境中学习政策的有前途的方法。不幸的是,由于样本效率低下,深度RL应用主要集中在模拟环境上。在这项工作中,我们证明了机器学习算法和库的最新进步与精心调整的机器人控制器相结合,导致在现实世界中仅20分钟内学习四倍的运动。我们在几个室内和室外地形上评估了我们的方法,这些室内和室外地形对基于古典模型的控制器来说是具有挑战性的。我们观察机器人能够在所有这些地形上始终如一地学习步态。最后,我们在模拟环境中评估我们的设计决策。
translated by 谷歌翻译
由于涉及的复杂动态和多标准优化,控制非静态双模型机器人具有挑战性。最近的作品已经证明了深度加强学习(DRL)的仿真和物理机器人的有效性。在这些方法中,通常总共总共汇总来自不同标准的奖励以学习单个值函数。但是,这可能导致混合奖励之间的依赖信息丢失并导致次优策略。在这项工作中,我们提出了一种新颖的奖励自适应加强学习,用于Biped运动,允许控制策略通过使用动态机制通过多标准同时优化。该方法应用多重批评,为每个奖励组件学习单独的值函数。这导致混合政策梯度。我们进一步提出了动态权重,允许每个组件以不同的优先级优化策略。这种混合动态和动态策略梯度(HDPG)设计使代理商更有效地学习。我们表明所提出的方法优于总结奖励方法,能够转移到物理机器人。 SIM-to-Real和Mujoco结果进一步证明了HDPG的有效性和泛化。
translated by 谷歌翻译
从任意堕落状态中起床是一种基本的人类技能。现有的学习这种技能的方法通常会产生高度动态和不稳定的起床动作,这不像人类的起床策略,或者基于跟踪记录的人类起床运动。在本文中,我们提出了一种使用强化学习的分阶段方法,而无需求助于运动捕获数据。该方法首先利用了强大的字符模型,从而有助于发现解决方案模式。然后,第二阶段学会了调整控制策略,以逐步与角色的较弱版本一起使用。最后,第三阶段学习控制政策,这些政策可以以较慢的速度重现较弱的起床动作。我们表明,在多个运行中,该方法可以发现各种各样的起床策略,并以各种速度执行它们。结果通常会产生采用最终站立策略的策略,这些策略是从所有初始状态中看到的恢复动作所共有的。但是,我们还发现了对俯卧和仰卧初始堕落状态的不同策略的政策。学识渊博的起床控制策略通常具有明显的静态稳定性,即,在起床运动过程中,它们可以在各个点停下来。我们进一步测试了新的限制场景的方法,例如在演员表中有一条腿和手臂。
translated by 谷歌翻译
Some of the most challenging environments on our planet are accessible to quadrupedal animals but remain out of reach for autonomous machines. Legged locomotion can dramatically expand the operational domains of robotics. However, conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes. These designs have escalated in complexity while falling short of the generality and robustness of animal locomotion. Here we present a radically robust controller for legged locomotion in challenging natural environments. We present a novel solution to incorporating proprioceptive feedback in locomotion control and demonstrate remarkable zero-shot generalization from simulation to natural environments. The controller is trained by reinforcement learning in simulation. It is based on a neural network that acts on a stream of proprioceptive signals. The trained controller has taken two generations of quadrupedal ANYmal robots to a variety of natural environments that are beyond the reach of prior published work in legged locomotion. The controller retains its robustness under conditions that have never been encountered during training: deformable terrain such as mud and snow, dynamic footholds such as rubble, and overground impediments such as thick vegetation and gushing water. The presented work opens new frontiers for robotics and indicates that radical robustness in natural environments can be achieved by training in much simpler domains.
translated by 谷歌翻译
Imitation learning techniques aim to mimic human behavior in a given task. An agent (a learning machine) is trained to perform a task from demonstrations by learning a mapping between observations and actions. The idea of teaching by imitation has been around for many years, however, the field is gaining attention recently due to advances in computing and sensing as well as rising demand for intelligent applications. The paradigm of learning by imitation is gaining popularity because it facilitates teaching complex tasks with minimal expert knowledge of the tasks. Generic imitation learning methods could potentially reduce the problem of teaching a task to that of providing demonstrations; without the need for explicit programming or designing reward functions specific to the task. Modern sensors are able to collect and transmit high volumes of data rapidly, and processors with high computational power allow fast processing that maps the sensory data to actions in a timely manner. This opens the door for many potential AI applications that require real-time perception and reaction such as humanoid robots, self-driving vehicles, human computer interaction and computer games to name a few. However, specialized algorithms are needed to effectively and robustly learn models as learning by imitation poses its own set of challenges. In this paper, we survey imitation learning methods and present design options in different steps of the learning process. We introduce a background and motivation for the field as well as highlight challenges specific to the imitation problem. Methods for designing and evaluating imitation learning tasks are categorized and reviewed. Special attention is given to learning methods in robotics and games as these domains are the most popular in the literature and provide a wide array of problems and methodologies. We extensively discuss combining imitation learning approaches using different sources and methods, as well as incorporating other motion learning methods to enhance imitation. We also discuss the potential impact on industry, present major applications and highlight current and future research directions.
translated by 谷歌翻译
我们为物理模拟字符进行了简单而直观的互动控制方法。我们的工作在生成的对抗网络(GAN)和加强学习时构建,并介绍了一个模仿学习框架,其中分类器的集合和仿制策略训练在给定预处理的参考剪辑中训练。分类器受过培训,以区分从模仿政策产生的运动中的参考运动,而策略是为了欺骗歧视者而获得奖励。使用我们的GaN的方法,可以单独培训多个电机控制策略以模仿不同的行为。在运行时,我们的系统可以响应用户提供的外部控制信号,并在不同策略之间交互式切换。与现有方法相比,我们所提出的方法具有以下有吸引力的特性:1)在不手动设计和微调奖励功能的情况下实现最先进的模仿性能; 2)直接控制字符,而无需明确地或隐含地通过相位状态跟踪任何目标参考姿势; 3)支持交互式策略切换,而无需任何运动生成或运动匹配机制。我们突出了我们在一系列模仿和互动控制任务中的方法的适用性,同时还证明了其抵御外部扰动以及恢复平衡的能力。总的来说,我们的方法产生高保真运动,运行时的运行时间低,并且可以轻松地集成到交互式应用程序和游戏中。
translated by 谷歌翻译
值得信赖的强化学习算法应有能力解决挑战性的现实问题,包括{Robustly}处理不确定性,满足{安全}的限制以避免灾难性的失败,以及在部署过程中{prencepentiming}以避免灾难性的失败}。这项研究旨在概述这些可信赖的强化学习的主要观点,即考虑其在鲁棒性,安全性和概括性上的内在脆弱性。特别是,我们给出严格的表述,对相应的方法进行分类,并讨论每个观点的基准。此外,我们提供了一个前景部分,以刺激有希望的未来方向,并简要讨论考虑人类反馈的外部漏洞。我们希望这项调查可以在统一的框架中将单独的研究汇合在一起,并促进强化学习的可信度。
translated by 谷歌翻译
Policy search methods can allow robots to learn control policies for a wide range of tasks, but practical applications of policy search often require hand-engineered components for perception, state estimation, and low-level control. In this paper, we aim to answer the following question: does training the perception and control systems jointly end-toend provide better performance than training each component separately? To this end, we develop a method that can be used to learn policies that map raw image observations directly to torques at the robot's motors. The policies are represented by deep convolutional neural networks (CNNs) with 92,000 parameters, and are trained using a guided policy search method, which transforms policy search into supervised learning, with supervision provided by a simple trajectory-centric reinforcement learning method. We evaluate our method on a range of real-world manipulation tasks that require close coordination between vision and control, such as screwing a cap onto a bottle, and present simulated comparisons to a range of prior policy search methods.
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译