深度MRI重建通常是使用有条件的模型进行的,该模型将其映射到完全采样的数据作为输出中。有条件的模型在加速成像运算符的知识下执行了脱氧,因此在操作员的域转移下,它们概括了很差。无条件模型是一种强大的替代方法,相反,它可以学习生成图像先验,以提高针对领域转移的可靠性。鉴于它们的高度代表性多样性和样本质量,最近的扩散模型特别有希望。然而,事先通过静态图像进行预测会导致次优性能。在这里,我们提出了一种基于适应性扩散的新型MRI重建Adadiff。为了启用有效的图像采样,引入了一个可以使用大扩散步骤的对抗映射器。使用受过训练的先验进行两阶段的重建:一个快速扩散阶段,产生初始重建阶段,以及一个适应阶段,其中更新扩散先验以最大程度地减少获得的K空间数据的重建损失。关于多对比的大脑MRI的演示清楚地表明,Adadiff在跨域任务中的竞争模型以及域内任务中的卓越或PAR性能方面取得了出色的性能。
translated by 谷歌翻译
通过源至目标模态丢失图像的插图可以促进医学成像中的下游任务。合成目标图像的普遍方法涉及通过生成对抗网络(GAN)的单发映射。然而,隐式表征图像分布的GAN模型可能会受到样本保真度和多样性的有限。在这里,我们提出了一种基于对抗扩散建模Syndiff的新方法,以提高医学图像合成的可靠性。为了捕获图像分布的直接相关性,Syndiff利用条件扩散过程逐步将噪声和源图像映射到目标图像上。对于推断期间的快速准确图像采样,大扩散步骤与反向扩散方向的对抗投影结合在一起。为了对未配对的数据集进行培训,设计了一个循环一致的体系结构,并使用两个耦合的扩散过程,以合成给定源的目标和给定的目标。报告了有关联合竞争性GAN和扩散模型在多对比度MRI和MRI-CT翻译中的效用的广泛评估。我们的示威表明,Syndiff在定性和定量上都可以针对竞争基线提供出色的性能。
translated by 谷歌翻译
基于学习的MRI翻译涉及一个合成模型,该模型将源对比度映射到目标对比图像上。多机构合作是跨广泛数据集培训合​​成模型的关键,但是集中式培训涉及隐私风险。联合学习(FL)是一个协作框架,相反,采用分散培训,以避免共享成像数据并减轻隐私问题。但是,成像数据的分布中固有的异质性可能会损害训练的模型。一方面,即使对于具有固定源目标配置的常见翻译任务,图像分布的隐式变化也很明显。相反,当规定具有不同源目标配置的不同翻译任务时,在站点内和跨站点内会出现明确的变化。为了提高针对域转移的可靠性,我们在这里介绍了MRI合成的第一种个性化FL方法(PFLSYNTH)。 PFLSYNTH基于配备映射器的对抗模型,该映射器会产生特定于单个站点和源目标对比的潜伏期。它利用新颖的个性化阻滞了基于这些潜伏期的发电机跨发电机图的统计和加权。为了进一步促进位点特异性,在发电机的下游层上采用了部分模型聚集,而上游层则保留在本地。因此,PFLSYNTH可以培训统一的合成模型,该模型可以可靠地跨越多个站点和翻译任务。在多站点数据集上进行的全面实验清楚地证明了PFLSHNTH在多对比度MRI合成中对先前联合方法的增强性能。
translated by 谷歌翻译
基于分数的扩散模型为使用数据分布的梯度建模图像提供了一种强大的方法。利用学到的分数函数为先验,在这里,我们引入了一种从条件分布中进行测量的方法,以便可以轻松地用于求解成像中的反问题,尤其是用于加速MRI。简而言之,我们通过denoising得分匹配来训练连续的时间依赖分数函数。然后,在推论阶段,我们在数值SDE求解器和数据一致性投影步骤之间进行迭代以实现重建。我们的模型仅需要用于训练的幅度图像,但能够重建复杂值数据,甚至扩展到并行成像。所提出的方法是不可知论到子采样模式,可以与任何采样方案一起使用。同样,由于其生成性质,我们的方法可以量化不确定性,这是标准回归设置不可能的。最重要的是,我们的方法还具有非常强大的性能,甚至击败了经过全面监督训练的模型。通过广泛的实验,我们在质量和实用性方面验证了我们方法的优势。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
我们引入了一个框架,该框架可以从学习概率分布中进行有效的MRI重建。与传统的基于深度学习的MRI重建技术不同,鉴于使用Markov链蒙特卡洛(MCMC)方法测得的K空间,样品是从后部分布中得出的。除了可以通过常规方法获得的图像的最大后验(MAP)估计值外,还可以计算最小平方误差(MMSE)估计值和不确定性图。数据驱动的马尔可夫链是根据从给定的图像数据库中学到的生成模型构建的,并且独立于用于建模K空间测量的前向操作员。这提供了灵活性,因为该方法可以应用于使用不同的采样方案获得的K空间或使用相同的预训练模型接收线圈。此外,我们使用基于反向扩散过程的框架来利用高级生成模型。该方法的性能使用K空间中的10倍下采样在开放数据集上进行评估。
translated by 谷歌翻译
Although recent deep learning methods, especially generative models, have shown good performance in fast magnetic resonance imaging, there is still much room for improvement in high-dimensional generation. Considering that internal dimensions in score-based generative models have a critical impact on estimating the gradient of the data distribution, we present a new idea, low-rank tensor assisted k-space generative model (LR-KGM), for parallel imaging reconstruction. This means that we transform original prior information into high-dimensional prior information for learning. More specifically, the multi-channel data is constructed into a large Hankel matrix and the matrix is subsequently folded into tensor for prior learning. In the testing phase, the low-rank rotation strategy is utilized to impose low-rank constraints on tensor output of the generative network. Furthermore, we alternately use traditional generative iterations and low-rank high-dimensional tensor iterations for reconstruction. Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance.
translated by 谷歌翻译
降解扩散概率模型(DDPM)已显示在MRI重建中具有出色的性能。从连续的随机微分方程(SDE)的角度来看,DDPM的反向过程可被视为最大化重建的MR图像的能量,从而导致SDE序列发散。因此,提出了用于MRI重建的修改高频DDPM模型。从其连续的SDE观点(称为高频空间SDE)(HFS-SDE),MR图像的能量浓缩低频部分不再得到放大,并且扩散过程更多地集中在获取高频的先验信息上。它不仅提高了扩散模型的稳定性,而且还提供了更好地恢复高频细节的可能性。公开FastMRI数据集的实验表明,我们提出的HFS-SDE优于DDPM驱动的VP-SDE,有监督的深度学习方法和传统的平行成像方法,就稳定性和重建精度而言。
translated by 谷歌翻译
磁共振成像是临床诊断的重要工具。但是,它遭受了漫长的收购时间。深度学习的利用,尤其是深层生成模型,在磁共振成像中提供了积极的加速和更好的重建。然而,学习数据分布作为先验知识并从有限数据中重建图像仍然具有挑战性。在这项工作中,我们提出了一种新颖的Hankel-K空间生成模型(HKGM),该模型可以从一个k-空间数据的训练集中生成样品。在先前的学习阶段,我们首先从k空间数据构建一个大的Hankel矩阵,然后从大型Hankel矩阵中提取多个结构化的K空间贴片,以捕获不同斑块之间的内部分布。从Hankel矩阵中提取斑块使生成模型可以从冗余和低级别的数据空间中学习。在迭代重建阶段,可以观察到所需的解决方案遵守学识渊博的先验知识。通过将其作为生成模型的输入来更新中间重建解决方案。然后,通过对测量数据对其Hankel矩阵和数据一致性组合施加低排名的惩罚来替代地进行操作。实验结果证实,单个K空间数据中斑块的内部统计数据具有足够的信息来学习强大的生成模型并提供最新的重建。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
Conditional diffusion probabilistic models can model the distribution of natural images and can generate diverse and realistic samples based on given conditions. However, oftentimes their results can be unrealistic with observable color shifts and textures. We believe that this issue results from the divergence between the probabilistic distribution learned by the model and the distribution of natural images. The delicate conditions gradually enlarge the divergence during each sampling timestep. To address this issue, we introduce a new method that brings the predicted samples to the training data manifold using a pretrained unconditional diffusion model. The unconditional model acts as a regularizer and reduces the divergence introduced by the conditional model at each sampling step. We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks. The improvements obtained by our method suggest that the priors can be incorporated as a general plugin for improving conditional diffusion models.
translated by 谷歌翻译
DeNoising扩散模型代表了计算机视觉中最新的主题,在生成建模领域表现出了显着的结果。扩散模型是一个基于两个阶段的深层生成模型,一个正向扩散阶段和反向扩散阶段。在正向扩散阶段,通过添加高斯噪声,输入数据在几个步骤中逐渐受到干扰。在反向阶段,模型的任务是通过学习逐步逆转扩散过程来恢复原始输入数据。尽管已知的计算负担,即由于采样过程中涉及的步骤数量,扩散模型对生成样品的质量和多样性得到了广泛赞赏。在这项调查中,我们对视觉中应用的denoising扩散模型的文章进行了全面综述,包括该领域的理论和实际贡献。首先,我们识别并介绍了三个通用扩散建模框架,这些框架基于扩散概率模型,噪声调节得分网络和随机微分方程。我们进一步讨论了扩散模型与其他深层生成模型之间的关系,包括变异自动编码器,生成对抗网络,基于能量的模型,自回归模型和正常流量。然后,我们介绍了计算机视觉中应用的扩散模型的多角度分类。最后,我们说明了扩散模型的当前局限性,并设想了一些有趣的未来研究方向。
translated by 谷歌翻译
在不利天气条件下的图像恢复对各种计算机视觉应用引起了重大兴趣。最近的成功方法取决于深度神经网络架构设计(例如,具有视觉变压器)的当前进展。由最新的条件生成模型取得的最新进展的动机,我们提出了一种基于贴片的图像恢复算法,基于脱氧扩散概率模型。我们的基于贴片的扩散建模方法可以通过使用指导的DeNoising过程进行尺寸 - 不足的图像恢复,并在推理过程中对重叠贴片进行平滑的噪声估计。我们在基准数据集上经验评估了我们的模型,以进行图像,混合的降低和飞行以及去除雨滴的去除。我们展示了我们在特定天气和多天气图像恢复上实现最先进的表演的方法,并在质量上表现出对现实世界测试图像的强烈概括。
translated by 谷歌翻译
压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
由于其作为生成模型的强大表现,最近达到了社区内部的显着兴趣。此外,其对逆问题的应用已经证明了最先进的性能。不幸的是,扩散模型具有临界缺点 - 它们本质上是速度的速度,从而需要几千台迭代来产生来自纯高斯噪声的图像。在这项工作中,我们表明从高斯噪音开始是不必要的。相反,从具有更好初始化的单个向前扩散开始显着降低了反向条件扩散中的采样步骤的数量。这种现象是通过我们的条件扩散策略的随机差分方程的收缩理论正式解释 - 反向扩散的交替应用,然后是非膨胀性数据一致性步骤。新的采样策略被称为较近的漫射 - 更快(CCDF),还揭示了新的洞察,就如何对逆问题的方法如何协同组合扩散模型。具有超分辨率,图像染色和压缩传感MRI的实验结果表明,我们的方法可以在显着降低的采样步骤中实现最先进的重建性能。
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
MRI和CT是最广泛使用的医学成像方式。通常有必要获取用于诊断和治疗的多模式图像,例如放射疗法计划。但是,多模式成像不仅昂贵,而且还引入了MRI和CT图像之间的错位。为了应对这一挑战,计算转换是MRI和CT图像之间的可行方法,尤其是从MRI到CT图像。在本文中,我们建议在这种情况下使用一个名为“扩散和得分匹配模型”的新兴深度学习框架。具体而言,我们适应了deno的扩散概率和得分匹配模型,使用四种不同的抽样策略,并将其性能指标与使用卷积神经网络和生成的对抗网络模型进行比较。我们的结果表明,扩散和得分匹配模型比CNN和GAN模型产生更好的合成CT图像。此外,我们使用蒙特卡洛方法研究了与扩散和得分匹配网络相关的不确定性,并通过平均其蒙特卡洛输出来改善结果。我们的研究表明,扩散和得分匹配模型具有强大的功能,可以生成以使用互补成像方式获得的图像来调节的高质量图像,在分析上进行了严格的解释性,并具有清晰的解释性,并且具有CNNS和GAN的高度竞争,以进行图像合成。
translated by 谷歌翻译
图像deBlurring是一种对给定输入图像的多种合理的解决方案是一个不适的问题。然而,大多数现有方法产生了清洁图像的确定性估计,并且训练以最小化像素级失真。已知这些指标与人类感知差,并且通常导致不切实际的重建。我们基于条件扩散模型介绍了盲脱模的替代框架。与现有技术不同,我们训练一个随机采样器,它改进了确定性预测器的输出,并且能够为给定输入产生多样化的合理重建。这导致跨多个标准基准的现有最先进方法的感知质量的显着提高。与典型的扩散模型相比,我们的预测和精致方法也能实现更有效的采样。结合仔细调整的网络架构和推理过程,我们的方法在PSNR等失真度量方面具有竞争力。这些结果表明了我们基于扩散和挑战的扩散和挑战的策略的显着优势,生产单一确定性重建的广泛使用策略。
translated by 谷歌翻译