基于学习的MRI翻译涉及一个合成模型,该模型将源对比度映射到目标对比图像上。多机构合作是跨广泛数据集培训合​​成模型的关键,但是集中式培训涉及隐私风险。联合学习(FL)是一个协作框架,相反,采用分散培训,以避免共享成像数据并减轻隐私问题。但是,成像数据的分布中固有的异质性可能会损害训练的模型。一方面,即使对于具有固定源目标配置的常见翻译任务,图像分布的隐式变化也很明显。相反,当规定具有不同源目标配置的不同翻译任务时,在站点内和跨站点内会出现明确的变化。为了提高针对域转移的可靠性,我们在这里介绍了MRI合成的第一种个性化FL方法(PFLSYNTH)。 PFLSYNTH基于配备映射器的对抗模型,该映射器会产生特定于单个站点和源目标对比的潜伏期。它利用新颖的个性化阻滞了基于这些潜伏期的发电机跨发电机图的统计和加权。为了进一步促进位点特异性,在发电机的下游层上采用了部分模型聚集,而上游层则保留在本地。因此,PFLSYNTH可以培训统一的合成模型,该模型可以可靠地跨越多个站点和翻译任务。在多站点数据集上进行的全面实验清楚地证明了PFLSHNTH在多对比度MRI合成中对先前联合方法的增强性能。
translated by 谷歌翻译
通过源至目标模态丢失图像的插图可以促进医学成像中的下游任务。合成目标图像的普遍方法涉及通过生成对抗网络(GAN)的单发映射。然而,隐式表征图像分布的GAN模型可能会受到样本保真度和多样性的有限。在这里,我们提出了一种基于对抗扩散建模Syndiff的新方法,以提高医学图像合成的可靠性。为了捕获图像分布的直接相关性,Syndiff利用条件扩散过程逐步将噪声和源图像映射到目标图像上。对于推断期间的快速准确图像采样,大扩散步骤与反向扩散方向的对抗投影结合在一起。为了对未配对的数据集进行培训,设计了一个循环一致的体系结构,并使用两个耦合的扩散过程,以合成给定源的目标和给定的目标。报告了有关联合竞争性GAN和扩散模型在多对比度MRI和MRI-CT翻译中的效用的广泛评估。我们的示威表明,Syndiff在定性和定量上都可以针对竞争基线提供出色的性能。
translated by 谷歌翻译
深度MRI重建通常是使用有条件的模型进行的,该模型将其映射到完全采样的数据作为输出中。有条件的模型在加速成像运算符的知识下执行了脱氧,因此在操作员的域转移下,它们概括了很差。无条件模型是一种强大的替代方法,相反,它可以学习生成图像先验,以提高针对领域转移的可靠性。鉴于它们的高度代表性多样性和样本质量,最近的扩散模型特别有希望。然而,事先通过静态图像进行预测会导致次优性能。在这里,我们提出了一种基于适应性扩散的新型MRI重建Adadiff。为了启用有效的图像采样,引入了一个可以使用大扩散步骤的对抗映射器。使用受过训练的先验进行两阶段的重建:一个快速扩散阶段,产生初始重建阶段,以及一个适应阶段,其中更新扩散先验以最大程度地减少获得的K空间数据的重建损失。关于多对比的大脑MRI的演示清楚地表明,Adadiff在跨域任务中的竞争模型以及域内任务中的卓越或PAR性能方面取得了出色的性能。
translated by 谷歌翻译
在医学领域,通常寻求多中心协作来通过利用患者和临床数据的异质性来产生更广泛的发现。但是,最近的隐私法规阻碍了共享数据的可能性,因此,提出了支持诊断和预后的基于机器学习的解决方案。联合学习(FL)旨在通过将基于AI的解决方案带入数据所有者,而仅共享需要汇总的本地AI模型或其部分,以避免这种限制。但是,大多数现有的联合学习解决方案仍处于起步阶段,并且由于缺乏可靠和有效的聚合计划能够保留本地学到的知识,从而显示出薄弱的隐私保护,因为可以从模型更新中重建实际数据,因此显示出几个缺点。此外,这些方法中的大多数,尤其是那些处理医学数据的方法,都依赖于一种集中的分布式学习策略,该策略构成了稳健性,可伸缩性和信任问题。在本文中,我们提出了一种分散的分布式方法,该方法从经验重播和生成对抗性研究中利用概念,有效地整合了本地节点的功能,从而提供了能够在维持隐私的同时跨多个数据集进行概括的模型。为了模拟现实的非i.i.d,使用多个数据集对两项任务进行了两项任务测试:结核病和黑色素瘤分类。数据方案。结果表明,我们的方法实现了与标准(未赋予)学习和联合方法相当的性能(因此,更有利)。
translated by 谷歌翻译
联合学习(FL)可用于通过使多个机构协作,改善磁共振(MR)图像重建的数据隐私和效率,而无需聚合本地数据。然而,由不同MR成像协议引起的域移位可以显着降低FL模型的性能。最近的流程倾向于通过增强全局模型的概括来解决这一点,但它们忽略了特定于域的特征,这可能包含有关设备属性的重要信息,并且对本地重建有用。在本文中,我们提出了一种针对MR图像重建(FEDMRI)的特异性保存流算法。核心思想是将MR重建模型划分为两个部分:全局共享编码器,以在全局级别获取概括的表示,以及客户特定的解码器,以保留每个客户端的特定于域的属性,这对于协作很重要当客户具有独特的分发时重建。此外,为了进一步提高全局共享编码器的收敛,当存在域移位时,引入加权对比正规化以在优化期间直接校正客户端和服务器之间的任何偏差。广泛的实验表明,我们的Fedmri的重建结果是最接近多机构数据的地面真理,并且它优于最先进的FL方法。
translated by 谷歌翻译
通过允许多个临床站点在不集中数据集的情况下协作学习全球模型,在联邦学习(FL)下进行的医学图像分割是一个有希望的方向。但是,使用单个模型适应来自不同站点的各种数据分布非常具有挑战性。个性化的FL仅利用来自Global Server共享的部分模型参数来解决此问题,同时保留其余部分以适应每个站点本地培训中的数据分布。但是,大多数现有方法都集中在部分参数分裂上,而在本地培训期间,不考虑\ textit {textit {site Inter-inter insteriscisies},实际上,这可以促进网站上的知识交流,以使模型学习有益于改进模型学习本地准确性。在本文中,我们提出了一个个性化的联合框架,使用\ textbf {l} ocal \ textbf {c}启动(lc-fed),以利用\ textIt {feftrict-and prediction-lactic}中的位置间暂停。提高细分。具体而言,由于每个本地站点都对各种功能都有另一种关注,因此我们首先设计嵌入的对比度位点,并与通道选择操作结合以校准编码的功能。此外,我们建议利用预测级别的一致性的知识,以指导模棱两可地区的个性化建模,例如解剖界限。它是通过计算分歧感知图来校准预测来实现的。我们的方法的有效性已在具有不同方式的三个医学图像分割任务上进行了验证,在该任务中,我们的方法始终显示出与最先进的个性化FL方法相比的性能。代码可从https://github.com/jcwang123/fedlc获得。
translated by 谷歌翻译
计算机断层扫描(CT)在临床实践中非常重要,因为它强大的能力在没有任何侵入性检查的情况下提供患者的解剖信息,但其潜在的辐射风险引起了人们的关注。基于深度学习的方法在CT重建中被认为是有希望的,但是这些网络模型通常是通过从特定扫描协议获得的测量数据进行训练的,并且需要集中收集大量数据,这将导致严重的数据域移动,并引起隐私问题。 。为了缓解这些问题,在本文中,我们提出了一种基于超网络的联合学习方法,用于个性化CT成像,称为超fed。超fed的基本假设是,每个机构的优化问题可以分为两个部分:本地数据适应问题和全局CT成像问题,这些问题分别由机构特定的超网络和全球共享成像网络实现。全球共享成像网络的目的是从不同机构学习稳定而有效的共同特征。特定于机构的超网络经过精心设计,以获取超参数,以调节用于个性化本地CT重建的全球共享成像网络。实验表明,与其他几种最先进的方法相比,超档在CT重建中实现了竞争性能。它被认为是提高CT成像质量并达到没有隐私数据共享的不同机构或扫描仪的个性化需求的有希望的方向。这些代码将在https://github.com/zi-yuanyang/hyperfed上发布。
translated by 谷歌翻译
联合学习是一种新兴的范式,允许大规模分散学习,而无需在不同的数据所有者中共享数据,这有助于解决医学图像分析中数据隐私的关注。但是,通过现有方法对客户的标签一致性的要求很大程度上缩小了其应用程序范围。实际上,每个临床部位只能以部分或没有与其他站点重叠的某些感兴趣的器官注释某些感兴趣的器官。将这种部分标记的数据纳入统一联邦是一个未开发的问题,具有临床意义和紧迫性。这项工作通过使用新型联合多重编码U-NET(FED-MENU)方法来应对挑战,以进行多器官分割。在我们的方法中,提出了一个多编码的U-NET(菜单网络),以通过不同的编码子网络提取器官特异性功能。每个子网络都可以看作是特定风琴的专家,并为该客户培训。此外,为了鼓励不同子网络提取的特定器官特定功能具有信息性和独特性,我们通过设计辅助通用解码器(AGD)来规范菜单网络的训练。四个公共数据集上的广泛实验表明,我们的Fed-Menu方法可以使用具有优越性能的部分标记的数据集有效地获得联合学习模型,而不是由局部或集中学习方法培训的其他模型。源代码将在纸质出版时公开提供。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
完全排列和配对的多模式神经成像数据的存在证明了其在诊断脑疾病中的有效性。但是,收集完整的一组良好的配对数据是不切实际的,因为实际困难可能包括高成本,长期获取,图像腐败和隐私问题。以前,未配对的神经影像数据(称为泥)通常被视为嘈杂的标签。但是,这种基于嘈杂的标签的方法在严重发生扭曲的数据时无法完成。例如,旋转角度不同。在本文中,我们提出了一种新的联邦自制学习(FEDMED),以用于脑形象合成。制定了仿射变换损失(ATL),以利用严重扭曲的图像,而无需违反医院的隐私立法。然后,我们引入了一种新的数据增强程序,以进行自我监督训练,并将其送入三个辅助头,即辅助旋转,辅助翻译和辅助缩放头。所提出的方法证明了在严重错误和未配对的数据设置下,我们合成结果的质量的高级性能,并且比其他基于GAN的算法更好。提出的方法还减少了对可变形注册的需求,同时鼓励利用未对准和未配对的数据。与其他最先进的方法相比,实验结果验证了我们学习范式的出色表现。
translated by 谷歌翻译
联合学习(FL)可以在不共享参与网站的数据的情况下协作学习深层学习模型。在医学图像分析中的FL相对较新,可开放增强功能。在这项研究中,我们提出了一种新的联邦学习方法,用于培训更广泛的模型。所提出的方法利用了客户选择中的随机性,也利用了联合平均过程。我们将FedDropOutvg与FL情景中的几种算法进行比较,用于现实世界多站点组织病理学图像分类任务。我们展示了通过FEDDROPOUDAVG,最终模型可以比其他FL方法更好地实现性能,并且更接近经典的深度学习模型,需要为集中培训共享所有数据。我们在大型数据集上测试训练有素的模型,由21个不同中心组成的120万像素瓷砖。为了评估所提出的方法的泛化能力,我们使用来自FL中的中心的中心的RET-OUT测试集,并且来自其他独立中心的看不见的数据,其数据未在联邦培训中使用。我们表明,拟议的方法比其他最先进的联邦培训方法更广泛。据我们所知,我们的是第一个在医学图像分析任务的联合设置中使用随机客户端和本地模型参数选择过程的研究。
translated by 谷歌翻译
Magnetic Resonance Fingerprinting (MRF) is an efficient quantitative MRI technique that can extract important tissue and system parameters such as T1, T2, B0, and B1 from a single scan. This property also makes it attractive for retrospectively synthesizing contrast-weighted images. In general, contrast-weighted images like T1-weighted, T2-weighted, etc., can be synthesized directly from parameter maps through spin-dynamics simulation (i.e., Bloch or Extended Phase Graph models). However, these approaches often exhibit artifacts due to imperfections in the mapping, the sequence modeling, and the data acquisition. Here we propose a supervised learning-based method that directly synthesizes contrast-weighted images from the MRF data without going through the quantitative mapping and spin-dynamics simulation. To implement our direct contrast synthesis (DCS) method, we deploy a conditional Generative Adversarial Network (GAN) framework and propose a multi-branch U-Net as the generator. The input MRF data are used to directly synthesize T1-weighted, T2-weighted, and fluid-attenuated inversion recovery (FLAIR) images through supervised training on paired MRF and target spin echo-based contrast-weighted scans. In-vivo experiments demonstrate excellent image quality compared to simulation-based contrast synthesis and previous DCS methods, both visually as well as by quantitative metrics. We also demonstrate cases where our trained model is able to mitigate in-flow and spiral off-resonance artifacts that are typically seen in MRF reconstructions and thus more faithfully represent conventional spin echo-based contrast-weighted images.
translated by 谷歌翻译
U-shaped networks are widely used in various medical image tasks, such as segmentation, restoration and reconstruction, but most of them usually rely on centralized learning and thus ignore privacy issues. To address the privacy concerns, federated learning (FL) and split learning (SL) have attracted increasing attention. However, it is hard for both FL and SL to balance the local computational cost, model privacy and parallel training simultaneously. To achieve this goal, in this paper, we propose Robust Split Federated Learning (RoS-FL) for U-shaped medical image networks, which is a novel hybrid learning paradigm of FL and SL. Previous works cannot preserve the data privacy, including the input, model parameters, label and output simultaneously. To effectively deal with all of them, we design a novel splitting method for U-shaped medical image networks, which splits the network into three parts hosted by different parties. Besides, the distributed learning methods usually suffer from a drift between local and global models caused by data heterogeneity. Based on this consideration, we propose a dynamic weight correction strategy (\textbf{DWCS}) to stabilize the training process and avoid model drift. Specifically, a weight correction loss is designed to quantify the drift between the models from two adjacent communication rounds. By minimizing this loss, a correction model is obtained. Then we treat the weighted sum of correction model and final round models as the result. The effectiveness of the proposed RoS-FL is supported by extensive experimental results on different tasks. Related codes will be released at https://github.com/Zi-YuanYang/RoS-FL.
translated by 谷歌翻译
联合学习(FL)可以通过各种不同远程数据源的机器学习模型的分布式计算,而无需将任何单独的数据传输到集中位置。这导致改进的模型的完全性,并且随着更多来源和较大的数据集被添加到联合中的计算和计算的有效缩放。然而,最近的成员攻击表明,当模型参数或摘要统计数据与中央站点共享时,有时可以泄露或推断出私有或敏感的个人数据,需要改进的安全解决方案。在这项工作中,我们提出了一种使用全同性全相治(FHE)的安全FL框架。具体而言,我们使用CKKS构造,近似浮点兼容方案,这些方案受益于密文包装和重新扫描。在我们对大型脑MRI数据集的评估中,我们使用建议的安全流动框架来培训深度学习模型,以预测分布式MRI扫描的一个人的年龄,一个共同的基准测试任务,并证明在学习表现中没有降级在加密和非加密的联合模型之间。
translated by 谷歌翻译
图表卷积神经网络(GCNS)广泛用于图形分析。具体地,在医学应用中,GCNS可用于群体图中的疾病预测,其中曲线图节点代表个体,边缘代表个体相似度。然而,GCNS依赖于大量数据,这是对单一医学机构收集的具有挑战性。此外,大多数医疗机构继续面临的危急挑战是用不完全的数据信息分离地解决疾病预测。为了解决这些问题,联合学习(FL)允许隔离本地机构协作,没有数据共享的全局模型。在这项工作中,我们提出了一个框架FEDNI,通过FL释放网络染色和机构间数据。具体地,我们首先使用图形生成的对冲网络(GaN)联接捕获缺少节点和边缘预测器来完成本地网络的缺失信息。然后我们使用联合图形学习平台跨过机构训练全局GCN节点分类器。新颖的设计使我们能够通过利用联合学习和图表学习方法来构建更准确的机器学习模型。我们证明,我们的联邦模式优于本地和基线流动方法,在两个公共神经影像数据集中具有显着的边缘。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
已经提出了分裂学习(SL)以分散的方式训练深度学习模型。对于具有垂直数据分配的分散医疗保健应用,SL可以有益,因为它允许具有互补功能或图像的机构为一组共享的患者共同开发更强大且可推广的模型。在这项工作中,我们提出了“ split-u-net”,并成功地将SL应用于协作生物医学图像分割。但是,SL需要交换中间激活图和梯度,以允许跨不同特征空间的训练模型,这可能会泄漏数据并提高隐私问题。因此,我们还量化了用于生物医学图像分割的常见SL情况下的数据泄漏量,并通过应用适当的防御策略提供了抵消此类泄漏的方法。
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
对于放射科医生和深度学习算法而言,MRI的早期前列腺癌检测和分期是极具挑战性的任务,但是向大型和多样化数据集学习的潜力仍然是提高其内部和整个诊所的概括能力的有希望的途径。为了对原型阶段算法进行此项启用,其中大多数现有研究仍然存在,在本文中,我们引入了一个灵活的联合学习框架,用于跨站点培训,验证和评估深前列腺癌检测算法。我们的方法利用了模型体系结构和数据的抽象表示,该表示允许使用NVFlare联合学习框架对未打磨的原型深度学习模型进行培训。我们的结果表明,使用专门的神经网络模型以及在加利福尼亚大学两家研究医院收集的专门神经网络模型以及不同的前列腺活检数据的前列腺癌检测和分类精度的提高,这证明了我们方法在适应不同数据集并改善MR-Biomarker发现的方法方面的功效。我们开源的FLTOOLS系统可以很容易地适应其他深度学习项目进行医学成像。
translated by 谷歌翻译