对于放射科医生和深度学习算法而言,MRI的早期前列腺癌检测和分期是极具挑战性的任务,但是向大型和多样化数据集学习的潜力仍然是提高其内部和整个诊所的概括能力的有希望的途径。为了对原型阶段算法进行此项启用,其中大多数现有研究仍然存在,在本文中,我们引入了一个灵活的联合学习框架,用于跨站点培训,验证和评估深前列腺癌检测算法。我们的方法利用了模型体系结构和数据的抽象表示,该表示允许使用NVFlare联合学习框架对未打磨的原型深度学习模型进行培训。我们的结果表明,使用专门的神经网络模型以及在加利福尼亚大学两家研究医院收集的专门神经网络模型以及不同的前列腺活检数据的前列腺癌检测和分类精度的提高,这证明了我们方法在适应不同数据集并改善MR-Biomarker发现的方法方面的功效。我们开源的FLTOOLS系统可以很容易地适应其他深度学习项目进行医学成像。
translated by 谷歌翻译
Non-invasive prostate cancer detection from MRI has the potential to revolutionize patient care by providing early detection of clinically-significant disease (ISUP grade group >= 2), but has thus far shown limited positive predictive value. To address this, we present an MRI-based deep learning method for predicting clinically significant prostate cancer applicable to a patient population with subsequent ground truth biopsy results ranging from benign pathology to ISUP grade group~5. Specifically, we demonstrate that mixed supervision via diverse histopathological ground truth improves classification performance despite the cost of reduced concordance with image-based segmentation. That is, where prior approaches have utilized pathology results as ground truth derived from targeted biopsies and whole-mount prostatectomy to strongly supervise the localization of clinically significant cancer, our approach also utilizes weak supervision signals extracted from nontargeted systematic biopsies with regional localization to improve overall performance. Our key innovation is performing regression by distribution rather than simply by value, enabling use of additional pathology findings traditionally ignored by deep learning strategies. We evaluated our model on a dataset of 973 (testing n=160) multi-parametric prostate MRI exams collected at UCSF from 2015-2018 followed by MRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating that deep networks trained with mixed supervision of histopathology can significantly exceed the performance of the Prostate Imaging-Reporting and Data System (PI-RADS) clinical standard for prostate MRI interpretation.
translated by 谷歌翻译
随着物联网,AI和ML/DL算法的出现,数据驱动的医疗应用已成为一种有前途的工具,用于从医学数据设计可靠且可扩展的诊断和预后模型。近年来,这引起了从学术界到工业的广泛关注。这无疑改善了医疗保健提供的质量。但是,由于这些基于AI的医疗应用程序在满足严格的安全性,隐私和服务标准(例如低延迟)方面的困难,因此仍然采用较差。此外,医疗数据通常是分散的和私人的,这使得在人群之间产生强大的结果具有挑战性。联邦学习(FL)的最新发展使得以分布式方式训练复杂的机器学习模型成为可能。因此,FL已成为一个积极的研究领域,尤其是以分散的方式处理网络边缘的医疗数据,以保护隐私和安全问题。为此,本次调查论文重点介绍了数据共享是重大负担的医疗应用中FL技术的当前和未来。它还审查并讨论了当前的研究趋势及其设计可靠和可扩展模型的结果。我们概述了FL将军的统计问题,设备挑战,安全性,隐私问题及其在医疗领域的潜力。此外,我们的研究还集中在医疗应用上,我们重点介绍了全球癌症的负担以及有效利用FL来开发计算机辅助诊断工具来解决这些诊断工具。我们希望这篇评论是一个检查站,以彻底的方式阐明现有的最新最新作品,并为该领域提供开放的问题和未来的研究指示。
translated by 谷歌翻译
通过允许多个临床站点在不集中数据集的情况下协作学习全球模型,在联邦学习(FL)下进行的医学图像分割是一个有希望的方向。但是,使用单个模型适应来自不同站点的各种数据分布非常具有挑战性。个性化的FL仅利用来自Global Server共享的部分模型参数来解决此问题,同时保留其余部分以适应每个站点本地培训中的数据分布。但是,大多数现有方法都集中在部分参数分裂上,而在本地培训期间,不考虑\ textit {textit {site Inter-inter insteriscisies},实际上,这可以促进网站上的知识交流,以使模型学习有益于改进模型学习本地准确性。在本文中,我们提出了一个个性化的联合框架,使用\ textbf {l} ocal \ textbf {c}启动(lc-fed),以利用\ textIt {feftrict-and prediction-lactic}中的位置间暂停。提高细分。具体而言,由于每个本地站点都对各种功能都有另一种关注,因此我们首先设计嵌入的对比度位点,并与通道选择操作结合以校准编码的功能。此外,我们建议利用预测级别的一致性的知识,以指导模棱两可地区的个性化建模,例如解剖界限。它是通过计算分歧感知图来校准预测来实现的。我们的方法的有效性已在具有不同方式的三个医学图像分割任务上进行了验证,在该任务中,我们的方法始终显示出与最先进的个性化FL方法相比的性能。代码可从https://github.com/jcwang123/fedlc获得。
translated by 谷歌翻译
通信技术和互联网的最新进展与人工智能(AI)启用了智能医疗保健。传统上,由于现代医疗保健网络的高性性和日益增长的数据隐私问题,AI技术需要集中式数据收集和处理,这可能在现实的医疗环境中可能是不可行的。作为一个新兴的分布式协作AI范例,通过协调多个客户(例如,医院)来执行AI培训而不共享原始数据,对智能医疗保健特别有吸引力。因此,我们对智能医疗保健的使用提供了全面的调查。首先,我们在智能医疗保健中展示了近期进程,动机和使用FL的要求。然后讨论了近期智能医疗保健的FL设计,从资源感知FL,安全和隐私感知到激励FL和个性化FL。随后,我们对关键医疗领域的FL新兴应用提供了最先进的综述,包括健康数据管理,远程健康监测,医学成像和Covid-19检测。分析了几个最近基于智能医疗保健项目,并突出了从调查中学到的关键经验教训。最后,我们讨论了智能医疗保健未来研究的有趣研究挑战和可能的指示。
translated by 谷歌翻译
从历史上看,患者数据集已用于开发和验证PET/MRI和PET/CT的各种重建算法。为了使这种算法开发,无需获得数百个患者检查,在本文中,我们展示了一种深度学习技术,可以从丰富的全身MRI中产生合成但逼真的全身宠物纹状体。具体来说,我们使用56 $^{18} $ F-FDG-PET/MRI考试的数据集训练3D残差UNET来预测全身T1加权MRI的生理PET摄取。在训练中,我们实施了平衡的损失函数,以在较大的动态范围内产生逼真的吸收,并沿着层析成像线的响应线对模仿宠物的获取产生计算的损失。预测的PET图像预计会产生合成宠物飞行时间(TOF)正式图,可与供应商提供的PET重建算法一起使用,包括使用基于CT的衰减校正(CTAC)和基于MR的衰减校正(MRAC(MRAC) )。由此产生的合成数据概括了生理学$^{18} $ f-fdg摄取,例如高摄取量位于大脑和膀胱,以及肝脏,肾脏,心脏和肌肉的吸收。为了模拟高摄取的异常,我们还插入合成病变。我们证明,该合成PET数据可以与实际PET数据互换使用,用于比较CT和基于MR的衰减校正方法的PET量化任务,与使用真实数据相比,在平均值中实现了$ \ leq 7.6 \%$误差。这些结果共同表明,所提出的合成PET数据管道可以合理地用于开发,评估和验证PET/MRI重建方法。
translated by 谷歌翻译
Data-driven Machine Learning has emerged as a promising approach for building accurate and robust statistical models from medical data, which is collected in huge volumes by modern healthcare systems. Existing medical data is not fully exploited by ML primarily because it sits in data silos and privacy concerns restrict access to this data. However, without access to sufficient data, ML will be prevented from reaching its full potential and, ultimately, from making the transition from research to clinical practice. This paper considers key factors contributing to this issue, explores how Federated Learning (FL) may provide a solution for the future of digital health and highlights the challenges and considerations that need to * Disclaimer: The opinions expressed herein are those of the authors and do not necessarily represent those of the institutions they are affiliated with, e.g. the U.S. Department of Health and Human Services or the National Institutes of Health. This is a pre-print version of https://www.nature.com/articles/s41746-020-00323-1 be addressed.
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译
多发性硬化症(MS)是中枢神经系统的慢性炎症和退行性疾病,其特征在于,白色和灰质的外观与个体患者的神经症状和标志进行地平整相关。磁共振成像(MRI)提供了详细的体内结构信息,允许定量和分类MS病变,其批判性地通知疾病管理。传统上,MS病变在2D MRI切片上手动注释,一个流程效率低,易于观察室内误差。最近,已经提出了自动统计成像分析技术以基于MRI体素强度检测和分段段病变。然而,它们的有效性受到MRI数据采集技术的异质性和MS病变的外观的限制。通过直接从图像学习复杂的病变表现,深度学习技术已经在MS病变分割任务中取得了显着的突破。在这里,我们提供了全面审查最先进的自动统计和深度学习MS分段方法,并讨论当前和未来的临床应用。此外,我们审查了域适应等技术策略,以增强现实世界临床环境中的MS病变分段。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
联合学习(FL)可以在不共享参与网站的数据的情况下协作学习深层学习模型。在医学图像分析中的FL相对较新,可开放增强功能。在这项研究中,我们提出了一种新的联邦学习方法,用于培训更广泛的模型。所提出的方法利用了客户选择中的随机性,也利用了联合平均过程。我们将FedDropOutvg与FL情景中的几种算法进行比较,用于现实世界多站点组织病理学图像分类任务。我们展示了通过FEDDROPOUDAVG,最终模型可以比其他FL方法更好地实现性能,并且更接近经典的深度学习模型,需要为集中培训共享所有数据。我们在大型数据集上测试训练有素的模型,由21个不同中心组成的120万像素瓷砖。为了评估所提出的方法的泛化能力,我们使用来自FL中的中心的中心的RET-OUT测试集,并且来自其他独立中心的看不见的数据,其数据未在联邦培训中使用。我们表明,拟议的方法比其他最先进的联邦培训方法更广泛。据我们所知,我们的是第一个在医学图像分析任务的联合设置中使用随机客户端和本地模型参数选择过程的研究。
translated by 谷歌翻译
联合学习是一种新兴的范式,允许大规模分散学习,而无需在不同的数据所有者中共享数据,这有助于解决医学图像分析中数据隐私的关注。但是,通过现有方法对客户的标签一致性的要求很大程度上缩小了其应用程序范围。实际上,每个临床部位只能以部分或没有与其他站点重叠的某些感兴趣的器官注释某些感兴趣的器官。将这种部分标记的数据纳入统一联邦是一个未开发的问题,具有临床意义和紧迫性。这项工作通过使用新型联合多重编码U-NET(FED-MENU)方法来应对挑战,以进行多器官分割。在我们的方法中,提出了一个多编码的U-NET(菜单网络),以通过不同的编码子网络提取器官特异性功能。每个子网络都可以看作是特定风琴的专家,并为该客户培训。此外,为了鼓励不同子网络提取的特定器官特定功能具有信息性和独特性,我们通过设计辅助通用解码器(AGD)来规范菜单网络的训练。四个公共数据集上的广泛实验表明,我们的Fed-Menu方法可以使用具有优越性能的部分标记的数据集有效地获得联合学习模型,而不是由局部或集中学习方法培训的其他模型。源代码将在纸质出版时公开提供。
translated by 谷歌翻译
在金融和医疗保健等高度监管域中的机构通常存在围绕数据共享的限制性规则。联合学习是一种分布式学习框架,可以实现对分散数据的多机构合作,并改善了每个合作师的数据隐私的保护。在本文中,我们提出了一种用于分散的联邦学习的通信有效的方案,称为ProxyFL或基于代理的联合学习。 ProxyFL中的每个参与者都维护了两个模型,私人模型和旨在保护参与者隐私的公开共享代理模型。代理模型允许参与者之间的高效信息交换,使用PushSum方法而无需集中式服务器。所提出的方法通过允许模型异质性消除了规范联合学习的显着限制;每个参与者都可以拥有任何架构的私有模型。此外,我们通过代理通信的协议导致使用差异隐私分析的隐私保障更强。对流行的图像数据集的实验,以及使用超过30,000多个高质量的千兆的千兆子痫组织的泛癌诊断问题整个幻灯片图像,表明ProxyFL可以优于现有的现有替代方案,越来越少的沟通开销和更强大的隐私。
translated by 谷歌翻译
脑转移性疾病的治疗决策依赖于主要器官位点的知识,目前用活组织检查和组织学进行。在这里,我们开发了一种具有全脑MRI数据的准确非侵入性数字组织学的新型深度学习方法。我们的IRB批准的单网回顾性研究由患者(n = 1,399)组成,提及MRI治疗规划和伽马刀放射牢房超过19年。对比增强的T1加权和T2加权流体减毒的反转恢复脑MRI考试(n = 1,582)被预处理,并输入肿瘤细分,模态转移和主要部位分类的建议深度学习工作流程为五个课程之一(肺,乳腺,黑色素瘤,肾等)。十倍的交叉验证产生的总体AUC为0.947(95%CI:0.938,0.955),肺类AUC,0.899(95%CI:0.884,0.915),乳房类AUC为0.990(95%CI:0.983,0.997) ,黑色素瘤ACAC为0.882(95%CI:0.858,0.906),肾类AUC为0.870(95%CI:0.823,0.918),以及0.885的其他AUC(95%CI:0.843,0.949)。这些数据确定全脑成像特征是判别的,以便准确诊断恶性肿瘤的主要器官位点。我们的端到端深度射出方法具有巨大的分类来自全脑MRI图像的转移性肿瘤类型。进一步的细化可以提供一种无价的临床工具,以加快对精密治疗和改进的结果的原发性癌症现场鉴定。
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
肾细胞癌(RCC)是一种常见的癌症,随着临床行为的变化。懒惰的RCC通常是低级的,没有坏死,可以在没有治疗的情况下监测。激进的RCC通常是高级的,如果未及时检测和治疗,可能会导致转移和死亡。虽然大多数肾脏癌在CT扫描中都检测到,但分级是基于侵入性活检或手术的组织学。确定对CT图像的侵略性在临床上很重要,因为它促进了风险分层和治疗计划。这项研究旨在使用机器学习方法来识别与病理学特征相关的放射学特征,以促进评估CT图像而不是组织学上的癌症侵略性。本文提出了一种新型的自动化方法,即按区域(Corrfabr)相关的特征聚集,用于通过利用放射学和相应的不对齐病理学图像之间的相关性来对透明细胞RCC进行分类。 CORRFABR由三个主要步骤组成:(1)特征聚集,其中从放射学和病理图像中提取区域级特征,(2)融合,放射学特征与病理特征相关的放射学特征在区域级别上学习,并且(3)在其中预测的地方学到的相关特征用于仅使用CT作为输入来区分侵略性和顽固的透明细胞RCC。因此,在训练过程中,Corrfabr从放射学和病理学图像中学习,但是在没有病理图像的情况下,Corrfabr将使用CORFABR将侵略性与顽固的透明细胞RCC区分开。 Corrfabr仅比放射学特征改善了分类性能,二进制分类F1分数从0.68(0.04)增加到0.73(0.03)。这证明了将病理疾病特征纳入CT图像上透明细胞RCC侵袭性的分类的潜力。
translated by 谷歌翻译
联合学习是一种数据解散隐私化技术,用于以安全的方式执行机器或深度学习。在本文中,我们介绍了有关联合学习的理论方面客户次数有所不同的用例。具体而言,使用从开放数据存储库中获得的胸部X射线图像提出了医学图像分析的用例。除了与隐私相关的优势外,还将研究预测的改进(就曲线下的准确性和面积而言)和减少执行时间(集中式方法)。将从培训数据中模拟不同的客户,以不平衡的方式选择,即,他们并非都有相同数量的数据。考虑三个或十个客户之间的结果与集中案件相比。间歇性客户将分析两种遵循方法,就像在实际情况下,某些客户可能会离开培训,一些新的新方法可能会进入培训。根据准确性,曲线下的区域和执行时间的结果,结果的结果的演变显示为原始数据被划分的客户次数。最后,提出了该领域的改进和未来工作。
translated by 谷歌翻译
联合学习(FL)和分裂学习(SL)是两种新兴的协作学习方法,可能会极大地促进物联网(IoT)中无处不在的智能。联合学习使机器学习(ML)模型在本地培训的模型使用私人数据汇总为全球模型。分裂学习使ML模型的不同部分可以在学习框架中对不同工人进行协作培训。联合学习和分裂学习,每个学习都有独特的优势和各自的局限性,可能会相互补充,在物联网中无处不在的智能。因此,联合学习和分裂学习的结合最近成为一个活跃的研究领域,引起了广泛的兴趣。在本文中,我们回顾了联合学习和拆分学习方面的最新发展,并介绍了有关最先进技术的调查,该技术用于将这两种学习方法组合在基于边缘计算的物联网环境中。我们还确定了一些开放问题,并讨论了该领域未来研究的可能方向,希望进一步引起研究界对这个新兴领域的兴趣。
translated by 谷歌翻译
联合学习(FL)可以通过各种不同远程数据源的机器学习模型的分布式计算,而无需将任何单独的数据传输到集中位置。这导致改进的模型的完全性,并且随着更多来源和较大的数据集被添加到联合中的计算和计算的有效缩放。然而,最近的成员攻击表明,当模型参数或摘要统计数据与中央站点共享时,有时可以泄露或推断出私有或敏感的个人数据,需要改进的安全解决方案。在这项工作中,我们提出了一种使用全同性全相治(FHE)的安全FL框架。具体而言,我们使用CKKS构造,近似浮点兼容方案,这些方案受益于密文包装和重新扫描。在我们对大型脑MRI数据集的评估中,我们使用建议的安全流动框架来培训深度学习模型,以预测分布式MRI扫描的一个人的年龄,一个共同的基准测试任务,并证明在学习表现中没有降级在加密和非加密的联合模型之间。
translated by 谷歌翻译