从历史上看,患者数据集已用于开发和验证PET/MRI和PET/CT的各种重建算法。为了使这种算法开发,无需获得数百个患者检查,在本文中,我们展示了一种深度学习技术,可以从丰富的全身MRI中产生合成但逼真的全身宠物纹状体。具体来说,我们使用56 $^{18} $ F-FDG-PET/MRI考试的数据集训练3D残差UNET来预测全身T1加权MRI的生理PET摄取。在训练中,我们实施了平衡的损失函数,以在较大的动态范围内产生逼真的吸收,并沿着层析成像线的响应线对模仿宠物的获取产生计算的损失。预测的PET图像预计会产生合成宠物飞行时间(TOF)正式图,可与供应商提供的PET重建算法一起使用,包括使用基于CT的衰减校正(CTAC)和基于MR的衰减校正(MRAC(MRAC) )。由此产生的合成数据概括了生理学$^{18} $ f-fdg摄取,例如高摄取量位于大脑和膀胱,以及肝脏,肾脏,心脏和肌肉的吸收。为了模拟高摄取的异常,我们还插入合成病变。我们证明,该合成PET数据可以与实际PET数据互换使用,用于比较CT和基于MR的衰减校正方法的PET量化任务,与使用真实数据相比,在平均值中实现了$ \ leq 7.6 \%$误差。这些结果共同表明,所提出的合成PET数据管道可以合理地用于开发,评估和验证PET/MRI重建方法。
translated by 谷歌翻译
在本文中,我们回顾了同时正电子发射断层扫描(PET) /磁共振成像(MRI)系统的物理和数据驱动的重建技术,这些技术在癌症,神经系统疾病和心脏病方面具有显着优势。这些重建方法利用结构或统计的先验,以及基于物理学的宠物系统响应的描述。但是,由于正向问题的嵌套表示,直接的PET/MRI重建是一个非线性问题。我们阐明了多方面的方法如何适应3D PET/MRI重建的混合数据和物理驱动的机器学习,总结了过去5年中重要的深度学习发展,以解决衰减校正,散射,低光子数和数据一致性。我们还描述了这些多模式方法的应用如何扩展到PET/MRI以提高放射治疗计划的准确性。最后,我们讨论了遵循物理和深度学习的计算成像和下一代探测器硬件的最新趋势,以扩展当前最新趋势的机会。
translated by 谷歌翻译
从磁共振成像(MRI)数据(称为颅骨条状)中去除非脑信号是许多神经图像分析流的组成部分。尽管它们很丰富,但通常是针对具有特定采集特性的图像量身定制的,即近乎各向异性的分辨率和T1加权(T1W)MRI对比度,这些分辨率在研究环境中很普遍。结果,现有的工具倾向于适应其他图像类型,例如在诊所常见的快速旋转回声(FSE)MRI中获得的厚切片。尽管近年来基于学习的大脑提取方法已获得吸引力,但这些方法面临着类似的负担,因为它们仅对训练过程中看到的图像类型有效。为了在成像协议的景观中实现强大的颅骨缠身,我们引入了Synthstrip,这是一种快速,基于学习的脑萃取工具。通过利用解剖学分割来生成具有解剖学,强度分布和远远超过现实医学图像范围的完全合成训练数据集,Synthstrip学会了成功推广到各种真实获得的大脑图像,从而消除了使用训练数据的需求目标对比。我们证明了合成条的功效对受试者人群的各种图像采集和决议的功效,从新生儿到成人。我们显示出与流行的颅骨基线的准确性的实质性提高 - 所有这些基线都采用单个训练有素的模型。我们的方法和标记的评估数据可在https://w3id.org/synthstrip上获得。
translated by 谷歌翻译
Non-invasive prostate cancer detection from MRI has the potential to revolutionize patient care by providing early detection of clinically-significant disease (ISUP grade group >= 2), but has thus far shown limited positive predictive value. To address this, we present an MRI-based deep learning method for predicting clinically significant prostate cancer applicable to a patient population with subsequent ground truth biopsy results ranging from benign pathology to ISUP grade group~5. Specifically, we demonstrate that mixed supervision via diverse histopathological ground truth improves classification performance despite the cost of reduced concordance with image-based segmentation. That is, where prior approaches have utilized pathology results as ground truth derived from targeted biopsies and whole-mount prostatectomy to strongly supervise the localization of clinically significant cancer, our approach also utilizes weak supervision signals extracted from nontargeted systematic biopsies with regional localization to improve overall performance. Our key innovation is performing regression by distribution rather than simply by value, enabling use of additional pathology findings traditionally ignored by deep learning strategies. We evaluated our model on a dataset of 973 (testing n=160) multi-parametric prostate MRI exams collected at UCSF from 2015-2018 followed by MRI/ultrasound fusion (targeted) biopsy and systematic (nontargeted) biopsy of the prostate gland, demonstrating that deep networks trained with mixed supervision of histopathology can significantly exceed the performance of the Prostate Imaging-Reporting and Data System (PI-RADS) clinical standard for prostate MRI interpretation.
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
Deep image prior (DIP) has recently attracted attention owing to its unsupervised positron emission tomography (PET) image reconstruction, which does not require any prior training dataset. In this paper, we present the first attempt to implement an end-to-end DIP-based fully 3D PET image reconstruction method that incorporates a forward-projection model into a loss function. To implement a practical fully 3D PET image reconstruction, which could not be performed due to a graphics processing unit memory limitation, we modify the DIP optimization to block-iteration and sequentially learn an ordered sequence of block sinograms. Furthermore, the relative difference penalty (RDP) term was added to the loss function to enhance the quantitative PET image accuracy. We evaluated our proposed method using Monte Carlo simulation with [$^{18}$F]FDG PET data of a human brain and a preclinical study on monkey brain [$^{18}$F]FDG PET data. The proposed method was compared with the maximum-likelihood expectation maximization (EM), maximum-a-posterior EM with RDP, and hybrid DIP-based PET reconstruction methods. The simulation results showed that the proposed method improved the PET image quality by reducing statistical noise and preserved a contrast of brain structures and inserted tumor compared with other algorithms. In the preclinical experiment, finer structures and better contrast recovery were obtained by the proposed method. This indicated that the proposed method can produce high-quality images without a prior training dataset. Thus, the proposed method is a key enabling technology for the straightforward and practical implementation of end-to-end DIP-based fully 3D PET image reconstruction.
translated by 谷歌翻译
为了纠正PET成像中的呼吸运动,构建了一种可解释和无监督的深度学习技术。对网络进行了训练,以预测不同呼吸幅度范围的两个宠物框架之间的光流。训练有素的模型将不同的回顾性宠物图像对齐,提供了最终图像,其计数统计量与非门控图像相似,但没有模糊的效果。 Flownet-PET应用于拟人化数字幻影数据,该数据提供了设计强大指标以量化校正的可能性。当比较预测的光流与地面真相时,发现中值绝对误差小于像素和切片宽度。通过与没有运动的图像进行比较,并计算肿瘤的联合(IOU)以及在应用校正之前和之后NO-MOTION肿瘤体积内的封闭活性和变异系数(COV)进行比较。网络提供的平均相对改进分别为IOU,总活动和COV的64%,89%和75%。 Fownet-Pet获得了与常规回顾相结合方法相似的结果,但仅需要扫描持续时间的六分之一。代码和数据已公开可用(https://github.com/teaghan/flownet_pet)。
translated by 谷歌翻译
Clinical diagnostic and treatment decisions rely upon the integration of patient-specific data with clinical reasoning. Cancer presents a unique context that influence treatment decisions, given its diverse forms of disease evolution. Biomedical imaging allows noninvasive assessment of disease based on visual evaluations leading to better clinical outcome prediction and therapeutic planning. Early methods of brain cancer characterization predominantly relied upon statistical modeling of neuroimaging data. Driven by the breakthroughs in computer vision, deep learning became the de facto standard in the domain of medical imaging. Integrated statistical and deep learning methods have recently emerged as a new direction in the automation of the medical practice unifying multi-disciplinary knowledge in medicine, statistics, and artificial intelligence. In this study, we critically review major statistical and deep learning models and their applications in brain imaging research with a focus on MRI-based brain tumor segmentation. The results do highlight that model-driven classical statistics and data-driven deep learning is a potent combination for developing automated systems in clinical oncology.
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
由于各种物理降解因素和收到有限的计数,宠物图像质量需要进一步改进。去核扩散概率模型(DDPM)是基于分布学习的模型,它们试图根据迭代改进将正态分布转换为特定的数据分布。在这项工作中,我们提出并评估了基于DDPM的不同基于DDPM的方法,以进行PET图像Denoisising。在DDPM框架下,执行PET图像Denoising的一种方法是提供PET图像和/或先前的图像作为网络输入。另一种方法是将先前的图像作为输入提供,其中包含在改进步骤中的PET图像,这可以适合不同噪声水平的方案。 120 18F-FDG数据集和140个18F-MK-6240数据集用于评估所提出的基于DDPM的方法。量化表明,基于DDPM的框架包含PET信息可以比非本地平均值和基于UNET的DeNoising方法产生更好的结果。在模型中添加额外的先验可以帮助实现更好的性能,并进一步降低图像deNosing过程中的不确定性。在忽略宠物信息的同时,仅依靠先验先验会导致巨大的偏见。区域和表面量化表明,在推断过程中嵌入PET图像作为数据一致性约束的同时,使用MR作为网络输入可以达到最佳性能。总而言之,基于DDPM的PET图像Denoisising是一个灵活的框架,它可以有效地利用先前的信息并获得比非本地平均值和基于UNET的DeNoising方法更好的性能。
translated by 谷歌翻译
The existence of completely aligned and paired multi-modal neuroimaging data has proved its effectiveness in diagnosis of brain diseases. However, collecting the full set of well-aligned and paired data is expensive or even impractical, since the practical difficulties may include high cost, long time acquisition, image corruption, and privacy issues. A realistic solution is to explore either an unsupervised learning or a semi-supervised learning to synthesize the absent neuroimaging data. In this paper, we are the first one to comprehensively approach cross-modality neuroimage synthesis task from different perspectives, which include the level of the supervision (especially for weakly-supervised and unsupervised), loss function, evaluation metrics, the range of modality synthesis, datasets (aligned, private and public) and the synthesis-based downstream tasks. To begin with, we highlight several opening challenges for cross-modality neuroimage sysnthesis. Then we summarize the architecture of cross-modality synthesis under various of supervision level. In addition, we provide in-depth analysis of how cross-modality neuroimage synthesis can improve the performance of different downstream tasks. Finally, we re-evaluate the open challenges and point out the future directions for the remaining challenges. All resources are available at https://github.com/M-3LAB/awesome-multimodal-brain-image-systhesis
translated by 谷歌翻译
数据已成为当今世界上最有价值的资源。随着数据驱动算法的大量扩散,例如基于深度学习的方法,数据的可用性引起了极大的兴趣。在这种情况下,特别需要高质量的培训,验证和测试数据集。体积数据是医学中非常重要的资源,因为它范围从疾病诊断到治疗监测。如果数据集足够,则可以培训模型来帮助医生完成这些任务。不幸的是,在某些情况和应用程序中,大量数据不可用。例如,在医疗领域,罕见疾病和隐私问题可能导致数据可用性受到限制。在非医学领域,获得足够数量的高质量数据的高成本也可能引起人们的关注。解决这些问题的方法可能是生成合成数据,以结合其他更传统的数据增强方法来执行数据增强。因此,关于3D生成对抗网络(GAN)的大多数出版物都在医疗领域内。生成现实合成数据的机制的存在是克服这一挑战的好资产,尤其是在医疗保健中,因为数据必须具有良好的质量并且接近现实,即现实,并且没有隐私问题。在这篇综述中,我们提供了使用GAN生成现实的3D合成数据的作品的摘要。因此,我们概述了具有共同体系结构,优势和缺点的这些领域中基于GAN的方法。我们提出了一种新颖的分类学,评估,挑战和研究机会,以提供医学和其他领域甘恩当前状态的整体概述。
translated by 谷歌翻译
CT和MRI是两种广泛使用的临床成像方式,用于非侵入性诊断。然而,这两种方式都有一定的问题。 CT使用有害电离辐射,MRI患有缓慢的采集速度。欠采样可以解决这两个问题,例如稀疏抽样。然而,这种向下采样的数据导致降低分辨率并引入人工制品。已经提出了几种技术,包括基于深度的学习方法,以重建此类数据。然而,这两个方式的欠采样重建问题总是被认为是两个不同的问题,并通过不同的研究工作分开解决。本文通过在径向MRI上应用傅立叶变换的预处理来实现稀疏CT和缺口MRI重建的统一解决方案,然后使用SCOMAGE ups采样与滤波后投影结合使用SCOMAGE Cups采样来实现的基于傅里叶变换的预处理。原始网络是一种基于深度学习的方法,用于重建稀疏采样的CT数据。本文介绍了原始 - 双工UNET,从精度和重建速度方面提高了原始双网络。所提出的方法导致平均SSSIM为0.932,同时对风扇束几何进行稀疏CT重建,其稀疏水平为16,实现了对先前模型的统计上显着的改进,这导致0.919。此外,所提出的模型导致0.903和0.957平均SSIM,同时重建具有16-统计上显着改善的加速因子,在原始模型上重建了缺乏采样的脑和腹部MRI数据,这导致0.867和0.949。最后,本文表明,所提出的网络不仅提高了整体图像质量,而且还提高了兴趣区域的图像质量;以及在针的存在下更好地推广。
translated by 谷歌翻译
基于深度学习的疾病检测和分割算法承诺提高许多临床过程。然而,由于数据隐私,法律障碍和非统一数据采集协议,此类算法需要大量的注释训练数据,通常在医学环境中不可用。具有注释病理学的合成数据库可以提供所需的培训数据量。我们展示了缺血性卒中的例子,即利用基于深度学习的增强的病变分割的改善是可行的。为此,我们训练不同的图像到图像转换模型,以合成大脑体积的磁共振图像,并且没有来自语义分割图的中风病变。此外,我们培养一种生成的对抗性网络来产生合成病变面具。随后,我们组合这两个组件来构建大型合成描边图像数据库。使用U-NET评估各种模型的性能,该U-NET在临床测试集上培训以进行段中风病变。我们向最佳性能报告$ \ mathbf {72.8} $%[$ \ mathbf {70.8 \ pm1.0} $%]的骰子分数,这胜过了单独临床图像培训的模型培训$ \ mathbf { 67.3} $%[$ \ mathbf {63.2 \ pm1.9} $%],并且接近人类互相互联网骰子评分$ \ mathbf {76.9} $%。此外,我们表明,对于仅为10或50个临床案例的小型数据库,与使用不使用合成数据的设置相比,合成数据增强产生了显着的改进。据我们所知,这提出了基于图像到图像翻译的合成数据增强的第一个比较分析,并将第一应用于缺血性卒中。
translated by 谷歌翻译
晚期钆增强磁共振成像(LGE MRI)通常用于可视化和量化左心房(LA)疤痕。疤痕的位置和程度提供了心理生理学和心房颤动进展的重要信息(AF)。因此,LGE MRI的La Scar分段和量化可用于AF患者的计算机辅助诊断和治疗分层。由于手动描绘可能是耗时的,并且经过专家内和专家间变异性,因此非常需要自动化这种计算,这然而仍然仍然具有挑战性和研究。本文旨在为La腔,墙壁,瘢痕和消融差距分割和LGE MRI的定量提供系统审查,以及AF研究的相关文献。具体而言,我们首先总结AF相关的成像技术,特别是LGE MRI。然后,我们详细介绍了四个计算任务的方法,并总结了每个任务中应用的验证策略。最后,概述了未来可能的未来发展,简要调查了上述方法的潜在临床应用。审查表明,该主题的研究仍处于早期阶段。虽然已经提出了几种方法,但特别是对于LA分割,由于与图像采集的高度变化相关的性能问题和图像采集差异有关的性能问题,仍有很大的算法发展。
translated by 谷歌翻译
全身动态PET中的受试者运动引入了框架间的不匹配,并严重影响参数成像。传统的非刚性注册方法通常在计算上是强度且耗时的。深度学习方法在快速速度方面实现高精度方面是有希望的,但尚未考虑示踪剂分布变化或整体范围。在这项工作中,我们开发了一个无监督的自动深度学习框架,以纠正框架间的身体运动。运动估计网络是一个卷积神经网络,具有联合卷积长的短期记忆层,充分利用动态的时间特征和空间信息。我们的数据集在90分钟的FDG全身动态PET扫描中包含27个受试者。与传统和深度学习基线相比,具有9倍的交叉验证,我们证明了拟议的网络在增强的定性和定量空间对齐方面获得了卓越的性能在显着降低参数拟合误差中。我们还展示了拟议的运动校正方法的潜力来影响对估计参数图像的下游分析,从而提高了将恶性与良性多代谢区域区分开的能力。一旦受过培训,我们提出的网络的运动估计推理时间比常规注册基线快460倍,表明其潜力很容易应用于临床环境中。
translated by 谷歌翻译
人工智能(AI)技术具有重要潜力,可以实现有效,鲁棒和自动的图像表型,包括识别细微图案。基于AI的检测搜索图像空间基于模式和特征来找到兴趣区域。存在一种良性的肿瘤组织学,可以通过使用图像特征的基于AI的分类方法来识别。图像从图像中提取可用于的可覆盖方式,可以通过显式(手工/工程化)和深度辐射谱系框架来探索途径。辐射瘤分析有可能用作非侵入性技术,以准确表征肿瘤,以改善诊断和治疗监测。这项工作介绍基于AI的技术,专注于肿瘤宠物和PET / CT成像,用于不同的检测,分类和预测/预测任务。我们还讨论了所需的努力,使AI技术转换为常规临床工作流程,以及潜在的改进和互补技术,例如在电子健康记录和神经象征性AI技术上使用自然语言处理。
translated by 谷歌翻译
List-mode positron emission tomography (PET) image reconstruction is an important tool for PET scanners with many lines-of-response and additional information such as time-of-flight and depth-of-interaction. Deep learning is one possible solution to enhance the quality of PET image reconstruction. However, the application of deep learning techniques to list-mode PET image reconstruction has not been progressed because list data is a sequence of bit codes and unsuitable for processing by convolutional neural networks (CNN). In this study, we propose a novel list-mode PET image reconstruction method using an unsupervised CNN called deep image prior (DIP) which is the first trial to integrate list-mode PET image reconstruction and CNN. The proposed list-mode DIP reconstruction (LM-DIPRecon) method alternatively iterates the regularized list-mode dynamic row action maximum likelihood algorithm (LM-DRAMA) and magnetic resonance imaging conditioned DIP (MR-DIP) using an alternating direction method of multipliers. We evaluated LM-DIPRecon using both simulation and clinical data, and it achieved sharper images and better tradeoff curves between contrast and noise than the LM-DRAMA, MR-DIP and sinogram-based DIPRecon methods. These results indicated that the LM-DIPRecon is useful for quantitative PET imaging with limited events while keeping accurate raw data information. In addition, as list data has finer temporal information than dynamic sinograms, list-mode deep image prior reconstruction is expected to be useful for 4D PET imaging and motion correction.
translated by 谷歌翻译
在过去的十年中,卷积神经网络(Convnets)主导了医学图像分析领域。然而,发现脉搏的性能仍然可以受到它们无法模拟图像中体素之间的远程空间关系的限制。最近提出了众多视力变压器来解决哀悼缺点,在许多医学成像应用中展示最先进的表演。变压器可以是用于图像配准的强烈候选者,因为它们的自我注意机制能够更精确地理解移动和固定图像之间的空间对应。在本文中,我们呈现透射帧,一个用于体积医学图像配准的混合变压器-Cromnet模型。我们还介绍了三种变速器的变形,具有两个散晶变体,确保了拓扑保存的变形和产生良好校准的登记不确定性估计的贝叶斯变体。使用来自两个应用的体积医学图像的各种现有的登记方法和变压器架构进行广泛验证所提出的模型:患者间脑MRI注册和幻影到CT注册。定性和定量结果表明,传输和其变体导致基线方法的实质性改进,展示了用于医学图像配准的变压器的有效性。
translated by 谷歌翻译