在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。然而,高质量的MR图像需要长时间的扫描时间,这导致患者的疲惫和不适,由于患者的自愿运动和非自愿的生理运动,诱导更多人工制品。为了加速扫描过程,通过K空间欠采样和基于深度学习的重建的方法已经推广。这项工作引进了SwinMR,这是一种基于新型的Swin变压器的快速MRI重建方法。整个网络由输入模块(IM)组成,特征提取模块(FEM)和输出模块(OM)。 IM和OM是2D卷积层,并且FEM由级联的残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的Shifted Windows多头自我关注(W-MSA / SW-MSA)在移位的窗口中执行,而不是整个图像空间中原始变压器的多头自我关注(MSA)。通过使用灵敏度图提出了一种新的多通道损耗,这被证明是为了保留更多纹理和细节。我们在Calgary-Campinas公共大脑MR DataSet中进行了一系列比较研究和消融研究,并在多模态脑肿瘤细分挑战2017年数据集中进行了下游分段实验。结果表明,与其他基准方法相比,我们的SwinMR实现了高质量的重建,并且它在噪音中断和不同的数据集中显示了不同的遮光罩掩模的稳健性。该代码在https://github.com/ayanglab/swinmr公开使用。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
快速MRI旨在通过部分观察到的测量结果重建高保真图像。最近已经看到了使用深度学习的快速MRI的旺盛发展。同时,新颖的深度学习范式,例如基于变压器的模型,在自然语言处理中快速增长,并由于其出色的性能而迅速开发用于计算机视觉和医学图像分析。然而,由于变压器的复杂性,快速MRI的应用可能并不直接。主要障碍是自我发项层的计算成本(这是变压器的核心部分)对于高分辨率MRI输入而言可能是昂贵的。在这项研究中,我们提出了一种新的变压器体系结构,用于求解快速MRI,该架构将转移的Windows变压器与U-NET耦合,以降低网络的复杂性。我们将注意力集中在解释我们的重建模型的解释性上。我们从经验上证明,我们的方法在快速MRI任务上始终如一地达到卓越的性能。此外,与最先进的变压器模型相比,我们的方法在揭示解释性的同时具有更少的网络参数。该代码可在https://github.com/ayanglab/sdaut上公开获取。
translated by 谷歌翻译
压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
具有高分辨率的视网膜光学相干断层扫描术(八八)对于视网膜脉管系统的定量和分析很重要。然而,八颗图像的分辨率与相同采样频率的视野成反比,这不利于临床医生分析较大的血管区域。在本文中,我们提出了一个新型的基于稀疏的域适应超分辨率网络(SASR),以重建现实的6x6 mm2/低分辨率/低分辨率(LR)八八粒图像,以重建高分辨率(HR)表示。更具体地说,我们首先对3x3 mm2/高分辨率(HR)图像进行简单降解,以获得合成的LR图像。然后,采用一种有效的注册方法在6x6 mm2图像中以其相应的3x3 mm2图像区域注册合成LR,以获得裁切的逼真的LR图像。然后,我们提出了一个多级超分辨率模型,用于对合成数据进行全面监督的重建,从而通过生成的对流策略指导现实的LR图像重建现实的LR图像,该策略允许合成和现实的LR图像可以在特征中统一。领域。最后,新型的稀疏边缘感知损失旨在动态优化容器边缘结构。在两个八八集中进行的广泛实验表明,我们的方法的性能优于最先进的超分辨率重建方法。此外,我们还研究了重建结果对视网膜结构分割的性能,这进一步验证了我们方法的有效性。
translated by 谷歌翻译
可以使用超分辨率方法改善医学图像的空间分辨率。实际增强的超级分辨率生成对抗网络(Real-Esrgan)是最近用于产生较高分辨率图像的最新有效方法之一,给定较低分辨率的输入图像。在本文中,我们应用这种方法来增强2D MR图像的空间分辨率。在我们提出的方法中,我们稍微修改了从脑肿瘤分割挑战(BRATS)2018数据集中训练2D磁共振图像(MRI)的结构。通过计算SSIM(结构相似性指数量度),NRMSE(归一化根平方误),MAE(平均绝对误差)和VIF(视觉信息保真度)值,通过计算SSIM(结构相似性指数量度)进行定性和定量验证。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译
深度学习网络在快速磁共振成像(MRI)重建中显示出令人鼓舞的结果。在我们的工作中,我们开发了深层网络,以进一步提高重建的定量和感知质量。首先,我们提出了Reconsynergynet(RSN),该网络结合了在图像和傅立叶域上独立运行的互补益处。对于单线采集,我们引入了深层级联RSN(DC-RSN),这是一个与数据保真度(DF)单位交织在一起的RSN块的级联。其次,我们通过协助T1加权成像(T1WI)的帮助,这是T2加权成像(T2WI)的DC-RSN的结构恢复,这是一个短时间采集时间的序列。通过日志功能(高尔夫)融合的梯度为DC-RSN提供T1援助。此外,我们建议感知改进网络(PRN)来完善重建以获得更好的视觉信息保真度(VIF),这是一种与放射科医生对图像质量高度相关的指标。最后,对于多线圈采集,我们提出了可变拆分RSN(VS-RSN),深层块,每个块,包含RSN,多圈DF单元和加权平均模块。我们广泛验证了单线和多线圈采集的模型DC-RSN和VS-RSN,并报告最先进的性能。我们在FastMRI中获得了0.768、0.923、0.878的SSIM,单线圈-4X,多螺旋-4X和多型圈-8X的SSIM为0.878。我们还进行了实验,以证明基于高尔夫的T1援助和PRN的功效。
translated by 谷歌翻译
现实的高光谱图像(HSI)超分辨率(SR)技术旨在从其低分辨率(LR)对应物中产生具有更高光谱和空间忠诚的高分辨率(HR)HSI。生成的对抗网络(GAN)已被证明是图像超分辨率的有效深入学习框架。然而,现有GaN的模型的优化过程经常存在模式崩溃问题,导致光谱间不变重建容量有限。这可能导致所生成的HSI上的光谱空间失真,尤其是具有大的升级因子。为了缓解模式崩溃的问题,这项工作提出了一种与潜在编码器(Le-GaN)耦合的新型GaN模型,其可以将产生的光谱空间特征从图像空间映射到潜在空间并产生耦合组件正规化生成的样本。基本上,我们将HSI视为嵌入在潜在空间中的高维歧管。因此,GaN模型的优化被转换为学习潜在空间中的高分辨率HSI样本的分布的问题,使得产生的超分辨率HSI的分布更接近其原始高分辨率对应物的那些。我们对超级分辨率的模型性能进行了实验评估及其在缓解模式崩溃中的能力。基于具有不同传感器(即Aviris和UHD-185)的两种实际HSI数据集进行了测试和验证,用于各种升高因素并增加噪声水平,并与最先进的超分辨率模型相比(即Hyconet,LTTR,Bagan,SR-GaN,Wgan)。
translated by 谷歌翻译
Medical images play an important role in clinical applications. Multimodal medical images could provide rich information about patients for physicians to diagnose. The image fusion technique is able to synthesize complementary information from multimodal images into a single image. This technique will prevent radiologists switch back and forth between different images and save lots of time in the diagnostic process. In this paper, we introduce a novel Dilated Residual Attention Network for the medical image fusion task. Our network is capable to extract multi-scale deep semantic features. Furthermore, we propose a novel fixed fusion strategy termed Softmax-based weighted strategy based on the Softmax weights and matrix nuclear norm. Extensive experiments show our proposed network and fusion strategy exceed the state-of-the-art performance compared with reference image fusion methods on four commonly used fusion metrics.
translated by 谷歌翻译
\ textit {objection:}基于gadolinium的对比剂(GBCA)已被广泛用于更好地可视化脑磁共振成像中的疾病(MRI)。然而,大脑和身体内部的gadolin量引起了人们对使用GBCA的安全问题。因此,在提供类似的对比度信息的同时,可以减少甚至消除GBCA暴露的新方法的发展将在临床上具有重大用途。 \ textit {方法:}在这项工作中,我们提出了一种基于深度学习的方法,用于对脑肿瘤患者的对比增强T1合成。 3D高分辨率完全卷积网络(FCN)通过处理和聚合并行的多尺度信息保持高分辨率信息,旨在将前对比度MRI序列映射到对比度增强的MRI序列。具体而言,将三个前对比的MRI序列T1,T2和表观扩散系数图(ADC)用作输入,而对比后T1序列则被用作目标输出。为了减轻正常组织与肿瘤区域之间的数据不平衡问题,我们引入了局部损失,以改善肿瘤区域的贡献,从而可以更好地增强对肿瘤的增强结果。 \ textIt {结果:}进行了广泛的定量和视觉评估,我们提出的模型在大脑中达到28.24db的PSNR,在肿瘤区域达到21.2db。 \ textit {结论和意义:}我们的结果表明,用深度学习产生的合成对比图像代替GBCA的潜力。代码可在\ url {https://github.com/chenchao666/contrast-enhanced-mri-synthesis中获得
translated by 谷歌翻译
基于对抗性学习的图像抑制方法,由于其出色的性能,已经在计算机视觉中进行了广泛的研究。但是,大多数现有方法对实际情况的质量功能有限,因为它们在相同场景的透明和合成的雾化图像上进行了培训。此外,它们在保留鲜艳的色彩和丰富的文本细节方面存在局限性。为了解决这些问题,我们开发了一个新颖的生成对抗网络,称为整体注意力融合对抗网络(HAAN),用于单个图像。 Haan由Fog2FogFogre块和FogFree2Fog块组成。在每个块中,有三个基于学习的模块,即雾除雾,颜色纹理恢复和雾合成,它们相互限制以生成高质量的图像。 Haan旨在通过学习雾图图像之间的整体通道空间特征相关性及其几个派生图像之间的整体通道空间特征相关性来利用纹理和结构信息的自相似性。此外,在雾合成模块中,我们利用大气散射模型来指导它,以通过新颖的天空分割网络专注于大气光优化来提高生成质量。关于合成和现实世界数据集的广泛实验表明,就定量准确性和主观的视觉质量而言,Haan的表现优于最先进的脱落方法。
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
目的:提出一种新的基于深度学习的方法,称为RG-NET(重建和生成网络),用于通过向下采样k空间高度加速的MR参数映射,并同时减少所获取的对比度。方法:所提出的框架包括重建模块和生成模块。在先前的帮助下,重建模块从所获取的少数下采样的k空间数据重建MR图像。然后,生成模块从重建的图像中综合剩余的多对比度图像,其中通过对完全采样标签的监督隐式模型被隐式地结合到图像生成中。在不同的加速率下对膝关节和大脑的映射数据进行评估RG-Net。 Cartilage和大脑的区域T1 \ R {HO}进行了分析,以获得RG-Net的性能。结果:RG-Net以高速加速度为17的高质量T1 \ R {Ho}地图。与仅借出k空间的竞争方法相比,我们的框架在T1 \ R {Ho}值中实现了更好的性能分析。我们的方法还提高了胶质瘤患者T1 \ R {Ho}的质量。结论:提出的RG-NET通过欠采样k空间采用新策略并同时减少快速先生参数映射的对比度,可以实现高加速率,同时保持良好的重建质量。我们的框架的生成模块也可以用作其他快速MR参数映射方法的插入模块。关键词:深度学习,卷积神经网络,快速先生参数映射
translated by 谷歌翻译
With the development of convolutional neural networks, hundreds of deep learning based dehazing methods have been proposed. In this paper, we provide a comprehensive survey on supervised, semi-supervised, and unsupervised single image dehazing. We first discuss the physical model, datasets, network modules, loss functions, and evaluation metrics that are commonly used. Then, the main contributions of various dehazing algorithms are categorized and summarized. Further, quantitative and qualitative experiments of various baseline methods are carried out. Finally, the unsolved issues and challenges that can inspire the future research are pointed out. A collection of useful dehazing materials is available at \url{https://github.com/Xiaofeng-life/AwesomeDehazing}.
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译