目的:提出一种新的基于深度学习的方法,称为RG-NET(重建和生成网络),用于通过向下采样k空间高度加速的MR参数映射,并同时减少所获取的对比度。方法:所提出的框架包括重建模块和生成模块。在先前的帮助下,重建模块从所获取的少数下采样的k空间数据重建MR图像。然后,生成模块从重建的图像中综合剩余的多对比度图像,其中通过对完全采样标签的监督隐式模型被隐式地结合到图像生成中。在不同的加速率下对膝关节和大脑的映射数据进行评估RG-Net。 Cartilage和大脑的区域T1 \ R {HO}进行了分析,以获得RG-Net的性能。结果:RG-Net以高速加速度为17的高质量T1 \ R {Ho}地图。与仅借出k空间的竞争方法相比,我们的框架在T1 \ R {Ho}值中实现了更好的性能分析。我们的方法还提高了胶质瘤患者T1 \ R {Ho}的质量。结论:提出的RG-NET通过欠采样k空间采用新策略并同时减少快速先生参数映射的对比度,可以实现高加速率,同时保持良好的重建质量。我们的框架的生成模块也可以用作其他快速MR参数映射方法的插入模块。关键词:深度学习,卷积神经网络,快速先生参数映射
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
由低级别正则化驱动的深度学习方法在动态磁共振(MR)成像中实现了有吸引力的性能。但是,这些方法中的大多数代表了手工制作的核标准的低级别先验,该规范无法通过固定的正则化参数准确地近似整个数据集的低排名先验。在本文中,我们提出了一种学习动态MR成像的低级方法。特别是,我们将部分可分离(PS)模型的半季度分裂方法(HQS)算法传输到网络中,其中低级别以可学习的空空间变换自适应地表征。心脏CINE数据集的实验表明,所提出的模型的表现优于最新的压缩传感(CS)方法和现有的深度学习方法,既有定量和质量上的深度学习方法。
translated by 谷歌翻译
深度学习在加速磁共振成像(MRI)中表现出惊人的性能。最先进的深度学习重建采用强大的卷积神经网络,并且由于许多磁共振图像或其对应的k空间是2D的许多磁共振图像或其对应的k空间。在这项工作中,我们展示了一种探讨了1D卷积的新方法,使得深度网络更容易受到培训和广义。我们进一步将1D卷积集成到所提出的深网络中,命名为一维深度低级和稀疏网络(ODL),它展开了低级和稀疏重建模型的迭代过程。在体内膝盖和脑数据集中的广泛结果表明,所提出的ODLS非常适合培训受试者的情况,并提供比视觉和定量的最先进的方法改进的重建性能。此外,ODL还向不同的欠采样场景显示出良好的稳健性以及培训和测试数据之间的一些不匹配。总之,我们的工作表明,在快速MRI中,1D深度学习方案是内存高效且强大的。
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
$ t_ {1 \ rho} $映射是一种有希望的定量MRI技术,用于对组织性质的非侵入性评估。基于学习的方法可以从减少数量的$ t_ {1 \ rho} $加权图像中映射$ t_ {1 \ rho} $,但需要大量的高质量培训数据。此外,现有方法不提供$ t_ {1 \ rho} $估计的置信度。为了解决这些问题,我们提出了一个自我监督的学习神经网络,该网络使用学习过程中的放松约束来学习$ t_ {1 \ rho} $映射。为$ t_ {1 \ rho} $量化网络建立了认知不确定性和态度不确定性,以提供$ t_ {1 \ rho} $映射的贝叶斯置信度估计。不确定性估计还可以使模型规范化,以防止其学习不完美的数据。我们对52例非酒精性脂肪肝病患者收集的$ T_ {1 \ rho} $数据进行了实验。结果表明,我们的方法优于$ t_ {1 \ rho} $量化肝脏的现有方法,使用少于两个$ t_ {1 \ rho} $加权图像。我们的不确定性估计提供了一种可行的方法,可以建模基于自我监督学习的$ t_ {1 \ rho} $估计的信心,这与肝脏中的现实$ t_ {1 \ rho} $成像是一致的。
translated by 谷歌翻译
深度学习方法已成功用于各种计算机视觉任务。受到成功的启发,已经在磁共振成像(MRI)重建中探索了深度学习。特别是,整合深度学习和基于模型的优化方法已显示出很大的优势。但是,对于高重建质量,通常需要大量标记的培训数据,这对于某些MRI应用来说是具有挑战性的。在本文中,我们提出了一种名为DUREN-NET的新型重建方法,该方法可以通过组合无监督的DeNoising网络和插件方法来为MR图像重建提供可解释的无监督学习。我们的目标是通过添加明确的先验利用成像物理学来提高无监督学习的重建性能。具体而言,使用denoising(红色)正规化实现了MRI重建网络的杠杆作用。实验结果表明,所提出的方法需要减少训练数据的数量才能达到高重建质量。
translated by 谷歌翻译
磁共振(MR)图像重建来自高度缺点$ K $ -space数据在加速MR成像(MRI)技术中至关重要。近年来,基于深度学习的方法在这项任务中表现出很大的潜力。本文提出了一种学习的MR图像重建半二次分割算法,并在展开的深度学习网络架构中实现算法。我们比较我们提出的方法对针对DC-CNN和LPDNET的公共心先生数据集的性能,我们的方法在定量结果和定性结果中表现出其他方法,具有更少的模型参数和更快的重建速度。最后,我们扩大了我们的模型,实现了卓越的重建质量,并且改善为1.76美元$ 276 $ 274美元的LPDNET以5美元\倍率为5美元的峰值信噪比。我们的方法的代码在https://github.com/hellopipu/hqs-net上公开使用。
translated by 谷歌翻译
Supervised Deep-Learning (DL)-based reconstruction algorithms have shown state-of-the-art results for highly-undersampled dynamic Magnetic Resonance Imaging (MRI) reconstruction. However, the requirement of excessive high-quality ground-truth data hinders their applications due to the generalization problem. Recently, Implicit Neural Representation (INR) has appeared as a powerful DL-based tool for solving the inverse problem by characterizing the attributes of a signal as a continuous function of corresponding coordinates in an unsupervised manner. In this work, we proposed an INR-based method to improve dynamic MRI reconstruction from highly undersampled k-space data, which only takes spatiotemporal coordinates as inputs. Specifically, the proposed INR represents the dynamic MRI images as an implicit function and encodes them into neural networks. The weights of the network are learned from sparsely-acquired (k, t)-space data itself only, without external training datasets or prior images. Benefiting from the strong implicit continuity regularization of INR together with explicit regularization for low-rankness and sparsity, our proposed method outperforms the compared scan-specific methods at various acceleration factors. E.g., experiments on retrospective cardiac cine datasets show an improvement of 5.5 ~ 7.1 dB in PSNR for extremely high accelerations (up to 41.6-fold). The high-quality and inner continuity of the images provided by INR has great potential to further improve the spatiotemporal resolution of dynamic MRI, without the need of any training data.
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
肾脏DCE-MRI旨在通过估计示踪动力学(TK)模型参数来定义评估肾脏解剖学和对肾功能的定量评估。 TK模型参数的准确估计需要具有高时间分辨率的动脉输入功能(AIF)的精确测量。加速成像用于实现高时间分辨率,其在重建图像中产生欠采样伪像。压缩传感(CS)方法提供各种重建选项。最常见的是,鼓励正规化的时间差异的稀疏性以减少伪影。在CS方法中越来越多的正则化除去环境伪像,但也会过度平滑时间,这减少了参数估计精度。在这项工作中,我们提出了一种训练有素的深神经网络,以减少MRI欠采样伪像而不降低功能成像标记的准确性。通过从较低的维度表示,我们通过从较低维度表示来促进正常化而不是在惩罚术语中进行规范化。在此手稿中,我们激励并解释了较低的维度输入设计。我们将我们的方法与多个正则化权重进行CS重建的方法。所提出的方法导致肾生物标志物与使用CS重建估计的地面真理标记高度相关,这是针对功能分析进行了优化的。同时,所提出的方法减少了重建图像中的伪像。
translated by 谷歌翻译
MRI扫描时间减少通常通过并行成像方法实现,通常基于逆图像空间(A.K.A.K空间)的均匀下采样和具有多个接收器线圈的同时信号接收。 Grappa方法通过跨越所有线圈的相邻获取信号的线性组合来插入缺失的k空间信号,并且可以通过k空间中的卷积来描述。最近,介绍了一种称为RAKI的更广泛的方法。 Raki是一种深入学习方法,将Grappa推广到附加的卷积层,在此期间应用非线性激活功能。这使得卷积神经网络能够实现缺失信号的非线性估计。与Grappa类似,Raki中的卷积核心使用从自动校准信号(ACS)获得的特定训练样本进行培训。 Raki与Grappa相比提供了卓越的重建质量,然而,由于其未知参数的数量增加,通常需要更多的AC。为了克服这一限制,本研究调查了训练数据对标准2D成像重建质量的影响,特别关注其金额和对比信息。此外,评估迭代k空间插值方法(araki),包括通过初始的格拉普重建训练数据增强,并通过迭代培训改进卷积滤波器。仅使用18,20和25个ACS线(8%),通过抑制在加速度因子R = 4和r = 5时发生的残余人工制品,并且与Grappa相比,通过定量质量指标加下划线,产生强烈的噪声抑制。与相约束的组合进一步改善。此外,在预扫描校准的情况下,伊拉克基显示比GRAPPA和RAKI更好的性能,并且在训练和缺乏采样的数据之间强烈不同的对比度。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
目的:开发一种适用于具有非平滑相位变化的扩散加权(DW)图像的鲁棒部分傅里叶(PF)重建算法。方法:基于展开的近端分裂算法,导出了一种神经网络架构,其在经常复卷卷积实现的数据一致性操作和正则化之间交替。为了利用相关性,在考虑到置换方面,共同重建相同切片的多重重复。该算法在60名志愿者的DW肝脏数据上培训,并回顾性和预期的不同解剖和分辨率的次样本数据评估。结果:该方法能够在定量措施以及感知图像质量方面具有显着优异地优于追溯子采样数据的传统PF技术。在这种情况下,发现重复的联合重建以及特定类型的经常性网络展开展开是有益的重建质量。在预期的PF采样数据上,所提出的方法使得DW成像能够在不牺牲图像分辨率或引入额外的伪影的情况下进行DW成像。或者,它可以用来对抗具有更高分辨率的获取的TE增加。此外,可以向展示训练集中的解剖学和对比度显示普遍性的脑数据。结论:这项工作表明,即使在易于相位变化的解剖中的强力PF因子中,DW数据的强大PF重建也是可行的。由于所提出的方法不依赖于阶段的平滑度前沿,而是使用学习的经常性卷积,因此可以避免传统PF方法的伪像。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
磁共振成像是临床诊断的重要工具。但是,它遭受了漫长的收购时间。深度学习的利用,尤其是深层生成模型,在磁共振成像中提供了积极的加速和更好的重建。然而,学习数据分布作为先验知识并从有限数据中重建图像仍然具有挑战性。在这项工作中,我们提出了一种新颖的Hankel-K空间生成模型(HKGM),该模型可以从一个k-空间数据的训练集中生成样品。在先前的学习阶段,我们首先从k空间数据构建一个大的Hankel矩阵,然后从大型Hankel矩阵中提取多个结构化的K空间贴片,以捕获不同斑块之间的内部分布。从Hankel矩阵中提取斑块使生成模型可以从冗余和低级别的数据空间中学习。在迭代重建阶段,可以观察到所需的解决方案遵守学识渊博的先验知识。通过将其作为生成模型的输入来更新中间重建解决方案。然后,通过对测量数据对其Hankel矩阵和数据一致性组合施加低排名的惩罚来替代地进行操作。实验结果证实,单个K空间数据中斑块的内部统计数据具有足够的信息来学习强大的生成模型并提供最新的重建。
translated by 谷歌翻译