具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
在相应的辅助对比的指导下,目标对比度的超级分辨磁共振(MR)图像(提供了其他解剖信息)是快速MR成像的新解决方案。但是,当前的多对比超分辨率(SR)方法倾向于直接连接不同的对比度,从而忽略了它们在不同的线索中的关系,例如在高强度和低强度区域中。在这项研究中,我们提出了一个可分离的注意网络(包括高强度的优先注意力和低强度分离注意力),名为SANET。我们的卫生网可以借助辅助对比度探索“正向”和“反向”方向中高强度和低强度区域的区域,同时学习目标对比MR的SR的更清晰的解剖结构和边缘信息图片。 SANET提供了三个吸引人的好处:(1)这是第一个探索可分离的注意机制的模型,该机制使用辅助对比来预测高强度和低强度区域,将更多的注意力转移到精炼这些区域和这些区域之间的任何不确定细节和纠正重建结果中的细小区域。 (2)提出了一个多阶段集成模块,以学习多个阶段的多对比度融合的响应,获得融合表示之间的依赖性,并提高其表示能力。 (3)在FastMRI和Clinical \ textit {in Vivo}数据集上进行了各种最先进的多对比度SR方法的广泛实验,证明了我们模型的优势。
translated by 谷歌翻译
尽管目前基于深度学习的方法在盲目的单图像超分辨率(SISR)任务中已获得了有希望的表现,但其中大多数主要集中在启发式上构建多样化的网络体系结构,并更少强调对Blur之间的物理发电机制的明确嵌入内核和高分辨率(HR)图像。为了减轻这个问题,我们提出了一个模型驱动的深神经网络,称为blind SISR。具体而言,为了解决经典的SISR模型,我们提出了一种简单的效果迭代算法。然后,通过将所涉及的迭代步骤展开到相应的网络模块中,我们自然构建了KXNET。所提出的KXNET的主要特异性是整个学习过程与此SISR任务的固有物理机制完全合理地集成在一起。因此,学习的模糊内核具有清晰的物理模式,并且模糊内核和HR图像之间的相互迭代过程可以很好地指导KXNET沿正确的方向发展。关于合成和真实数据的广泛实验很好地证明了我们方法的卓越准确性和一般性超出了当前代表性的最先进的盲目SISR方法。代码可在:\ url {https://github.com/jiahong-fu/kxnet}中获得。
translated by 谷歌翻译
Low-field (LF) MRI scanners have the power to revolutionize medical imaging by providing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usually significantly noisier and lower quality than their high-field counterparts. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551. We tested our network on artificial noisy downsampled synthetic data from a major T1 weighted MRI image dataset called the T1-mix dataset. One board-certified radiologist scored 25 images on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). We also introduce a new type of loss function called natural log mean squared error (NLMSE). In conclusion, we present a more accurate deep learning method for single image super-resolution applied to synthetic low-field MRI via a Nested U-Net architecture.
translated by 谷歌翻译
将优化算法映射到神经网络中,深度展开的网络(DUNS)在压缩传感(CS)方面取得了令人印象深刻的成功。从优化的角度来看,Duns从迭代步骤中继承了一个明确且可解释的结构。但是,从神经网络设计的角度来看,大多数现有的Dun是基于传统图像域展开而固有地建立的,该图像域的展开将一通道图像作为相邻阶段之间的输入和输出,从而导致信息传输能力不足,并且不可避免地会损失图像。细节。在本文中,为了打破上述瓶颈,我们首先提出了一个广义的双域优化框架,该框架是逆成像的一般性,并将(1)图像域和(2)卷积编码域先验的优点整合到限制解决方案空间中的可行区域。通过将所提出的框架展开到深神经网络中,我们进一步设计了一种新型的双域深卷积编码网络(D3C2-NET),用于CS成像,具有通过所有展开的阶段传输高通量特征级图像表示的能力。关于自然图像和MR图像的实验表明,与其他最先进的艺术相比,我们的D3C2-NET实现更高的性能和更好的准确性权衡权衡。
translated by 谷歌翻译
为了解决高光谱图像超分辨率(HSISR)的不良问题,通常方法是使用高光谱图像(HSIS)的先前信息作为正则化术语来限制目标函数。使用手工制作前沿的基于模型的方法无法完全表征HSI的性质。基于学习的方法通常使用卷积神经网络(CNN)来学习HSI的隐式前导者。然而,CNN的学习能力是有限的,它仅考虑HSI的空间特性并忽略光谱特性,并且卷积对远程依赖性建模无效。还有很多改进的空间。在本文中,我们提出了一种新颖的HSISR方法,该方法使用变压器而不是CNN来学习HSI之前。具体地,我们首先使用近端梯度算法来解决HSISR模型,然后使用展开网络来模拟迭代解决方案过程。变压器的自我注意层使其具有空间全局互动的能力。此外,我们在变压器层后面添加3D-CNN,以更好地探索HSIS的时空相关性。两个广泛使用的HSI数据集和实际数据集的定量和视觉结果证明,与所有主流算法相比,所提出的方法实现了相当大的增益,包括最竞争力的传统方法和最近提出的基于深度学习的方法。
translated by 谷歌翻译
缩短采集时间和减少动作伪影是磁共振成像中最重要的两个问题。作为一个有前途的解决方案,已经研究了基于深度学习的高质量MR图像恢复,以产生从缩短采集时间获取的较低分辨率图像的更高分辨率和自由运动伪影图像,而不降低额外的获取时间或修改脉冲序列。然而,仍有许多问题仍然存在,以防止深度学习方法在临床环境中变得实用。具体而言,大多数先前的作品专注于网络模型,但忽略了各种下采样策略对采集时间的影响。此外,长推理时间和高GPU消耗也是瓶颈,以便在诊所部署大部分产品。此外,先验研究采用回顾性运动伪像产生随机运动,导致运动伪影的无法控制的严重程度。更重要的是,医生不确定生成的MR图像是否值得信赖,使诊断困难。为了克服所有这些问题,我们雇用了一个统一的2D深度学习神经网络,用于3D MRI超级分辨率和运动伪影,展示这种框架可以在3D MRI恢复任务中实现更好的性能与最艺术方法的其他状态,并且仍然存在GPU消耗和推理时间明显低,从而更易于部署。我们还基于加速度分析了几种下式采样策略,包括在平面内和穿过平面下采样的多种组合,并开发了一种可控和可量化的运动伪影生成方法。最后,计算并用于估计生成图像的准确性的像素 - 明智的不确定性,提供可靠诊断的附加信息。
translated by 谷歌翻译
Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
translated by 谷歌翻译
改善磁共振(MR)图像数据的分辨率对于计算机辅助诊断和大脑功能分析至关重要。更高的分辨率有助于捕获更详细的内容,但通常会导致较低的信噪比和更长的扫描时间。为此,MR Image超级分辨率已成为近期广泛利益的主题。现有作品建立了广泛的深层模型,该模型具有基于卷积神经网络(CNN)的常规体系结构。在这项工作中,为了进一步推进该研究领域,我们尽早努力建立一个基于变压器的MR图像超分辨率框架,并仔细设计了探索有价值的领域的先验知识。具体而言,我们考虑了包括高频结构的两倍领域先验和模式间环境,并建立了一种新颖的变压器体系结构,称为跨模式高频变压器(COHF-T),以将此类先验引入超分辨率(LR)MR图像的超级分辨。两个数据集的实验表明COHF-T可以实现新的最新性能。
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译
使用卷积神经网络(CNN)的最先进的磁共振(MR)图像超分辨率方法(ISR)由于CNN的空间覆盖率有限,因此在有限的上下文信息中利用有限的上下文信息。Vision Transformers(VIT)学习更好的全球环境,这有助于产生优质的HR图像。我们将CNN的本地信息和来自VIT的全局信息结合在一起,以获得图像超级分辨率和输出超级分辨率的图像,这些图像的质量比最先进的方法所产生的质量更高。我们通过多个新颖的损失函数包括额外的约束,这些损失功能将结构和纹理信息从低分辨率到高分辨率图像。
translated by 谷歌翻译
磁共振成像(MRI)的核心问题是加速度和图像质量之间的折衷。图像重建和超分辨率是磁共振成像(MRI)中的两个重要技术。目前的方法旨在单独执行这些任务,忽略它们之间的相关性。在这项工作中,我们为联合MRI重建和超分辨率提出了一个端到端的任务变压器网络(T $ ^ 2 $ net),它允许在多项任务之间共享表示和特征传输以实现更高质量的,来自高度遮盖率和退化的MRI数据的无序和运动伪影的图像。我们的框架与重建和超分辨率相结合,分为两个子分支,其功能表示为查询和键。具体地,我们鼓励两个任务之间的联合特征学习,从而传输准确的任务信息。我们首先使用两个单独的CNN分支来提取特定于任务的功能。然后,任务变压器模块旨在嵌入和综合两个任务之间的相关性。实验结果表明,我们的多任务模型显着优于高级顺序方法,包括定量和定性。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
具有高分辨率的视网膜光学相干断层扫描术(八八)对于视网膜脉管系统的定量和分析很重要。然而,八颗图像的分辨率与相同采样频率的视野成反比,这不利于临床医生分析较大的血管区域。在本文中,我们提出了一个新型的基于稀疏的域适应超分辨率网络(SASR),以重建现实的6x6 mm2/低分辨率/低分辨率(LR)八八粒图像,以重建高分辨率(HR)表示。更具体地说,我们首先对3x3 mm2/高分辨率(HR)图像进行简单降解,以获得合成的LR图像。然后,采用一种有效的注册方法在6x6 mm2图像中以其相应的3x3 mm2图像区域注册合成LR,以获得裁切的逼真的LR图像。然后,我们提出了一个多级超分辨率模型,用于对合成数据进行全面监督的重建,从而通过生成的对流策略指导现实的LR图像重建现实的LR图像,该策略允许合成和现实的LR图像可以在特征中统一。领域。最后,新型的稀疏边缘感知损失旨在动态优化容器边缘结构。在两个八八集中进行的广泛实验表明,我们的方法的性能优于最先进的超分辨率重建方法。此外,我们还研究了重建结果对视网膜结构分割的性能,这进一步验证了我们方法的有效性。
translated by 谷歌翻译
Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-ofthe-art single image super-resolution approaches.
translated by 谷歌翻译
引导深度超分辨率(GDSR)是多模态图像处理中的必要主题,其在同一场景的HR RGB图像的帮助下重建与次优条件的低分辨率的高分辨率(HR)深度映射。为了解决解释工作机制的挑战,提取过度转移的跨模型特征和RGB纹理,我们提出了一种新颖的离散余弦变换网络(DCTNet)来缓解三个方面的问题。首先,离散余弦变换(DCT)模块通过使用DCT来解决来自GDSR的图像域的频道明智的优化问题来重建多通道HR深度特征。其次,我们介绍了一个半耦合特征提取模块,使用共享卷积核,以提取公共功能和私有内核,以提取特定的模态特征。第三,我们采用了边缘注意机制,以突出导致导游的轮廓。广泛的定量和定性评估表明了我们的DCTNET的有效性,这优于以前的最先进方法,具有相对较少的参数。代码将公开。
translated by 谷歌翻译
本文考虑了快速MRI重建的问题。我们提出了一个基于变压器的新型框架,用于直接处理K空间中稀疏采样的信号,超出了像Convnets一样的常规网格的限制。我们采用频谱图的隐式表示,将空间坐标视为输入,并动态查询部分观察到的测量值以完成频谱图,即学习K空间中的电感偏置。为了在计算成本和重建质量之间保持平衡,我们分别建立了一个具有低分辨率和高分辨率解码器的层次结构。为了验证我们提出的模块的必要性,我们在两个公共数据集上进行了广泛的实验,并表现出优于最先进方法的卓越或可比性。
translated by 谷歌翻译
现代数码相机和智能手机主要依赖于图像信号处理(ISP)管道,从而产生逼真的彩色RGB图像。然而,与DSLR相机相比,由于其物理限制,在许多便携式移动设备中通常可以在许多便携式移动设备中获得低质量的图像。低质量的图像具有多种降级,即,由于相机滤色器阵列,由于相机滤色器阵列,由于较小的摄像机传感器而导致的低分辨率,磁割模式,并且其余信息因噪声损坏而导致的镶嵌图案。这种降级限制了从单个低分辨率(LR)图像中恢复高分辨率(HR)图像细节的电流单图像超分辨率(SISR)方法的性能。在这项工作中,我们提出了一种原始的突发超分辨率迭代卷积神经网络(RBSricnn),其作为前向(物理)模型的整体沿着突发拍摄管道。与现有的黑盒数据驱动方法相比,所提出的突发SR方案解决了经典图像正则化,凸优化和深度学习技术的问题。所提出的网络通过中间SR估计的迭代细化产生最终输出。我们展示了我们提出的方法在定量和定性实验中的有效性,这些实验概括为具有可用于培训的ONL合成突发数据的真实LR突发输入。
translated by 谷歌翻译
压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
在计算断层摄影(CT)成像过程中,患者内的金属植入物总是造成有害伪影,这对重建的CT图像的视觉质量产生了负面影响,并且对随后的临床诊断产生负面影响。对于金属伪影减少(MAR)任务,基于深度学习的方法取得了有希望的表现。然而,大多数主要共享两个主要常见限制:1)CT物理成像几何约束是完全融入深网络结构中的; 2)整个框架对特定MAR任务具有薄弱的可解释性;因此,难以评估每个网络模块的作用。为了减轻这些问题,在本文中,我们构建了一种新的可解释的双域网络,称为Indudonet +,CT成像过程被精细地嵌入到其中。具体地说,我们推出了一个联合空间和氡域重建模型,并提出了一种仅具有简单操作员的优化算法来解决它。通过将所提出的算法中涉及的迭代步骤展开到相应的网络模块中,我们可以轻松地构建Indudonet +,以明确的解释性。此外,我们分析了不同组织之间的CT值,并将现有的观察合并到Endudonet +的现有网络中,这显着提高了其泛化性能。综合数据和临床数据的综合实验证实了所提出的方法的优越性以及超出当前最先进(SOTA)MAR方法的卓越概括性性能。代码可用于\ url {https://github.com/hongwang01/indududonet_plus}。
translated by 谷歌翻译