缩短采集时间和减少动作伪影是磁共振成像中最重要的两个问题。作为一个有前途的解决方案,已经研究了基于深度学习的高质量MR图像恢复,以产生从缩短采集时间获取的较低分辨率图像的更高分辨率和自由运动伪影图像,而不降低额外的获取时间或修改脉冲序列。然而,仍有许多问题仍然存在,以防止深度学习方法在临床环境中变得实用。具体而言,大多数先前的作品专注于网络模型,但忽略了各种下采样策略对采集时间的影响。此外,长推理时间和高GPU消耗也是瓶颈,以便在诊所部署大部分产品。此外,先验研究采用回顾性运动伪像产生随机运动,导致运动伪影的无法控制的严重程度。更重要的是,医生不确定生成的MR图像是否值得信赖,使诊断困难。为了克服所有这些问题,我们雇用了一个统一的2D深度学习神经网络,用于3D MRI超级分辨率和运动伪影,展示这种框架可以在3D MRI恢复任务中实现更好的性能与最艺术方法的其他状态,并且仍然存在GPU消耗和推理时间明显低,从而更易于部署。我们还基于加速度分析了几种下式采样策略,包括在平面内和穿过平面下采样的多种组合,并开发了一种可控和可量化的运动伪影生成方法。最后,计算并用于估计生成图像的准确性的像素 - 明智的不确定性,提供可靠诊断的附加信息。
translated by 谷歌翻译
在相应的辅助对比的指导下,目标对比度的超级分辨磁共振(MR)图像(提供了其他解剖信息)是快速MR成像的新解决方案。但是,当前的多对比超分辨率(SR)方法倾向于直接连接不同的对比度,从而忽略了它们在不同的线索中的关系,例如在高强度和低强度区域中。在这项研究中,我们提出了一个可分离的注意网络(包括高强度的优先注意力和低强度分离注意力),名为SANET。我们的卫生网可以借助辅助对比度探索“正向”和“反向”方向中高强度和低强度区域的区域,同时学习目标对比MR的SR的更清晰的解剖结构和边缘信息图片。 SANET提供了三个吸引人的好处:(1)这是第一个探索可分离的注意机制的模型,该机制使用辅助对比来预测高强度和低强度区域,将更多的注意力转移到精炼这些区域和这些区域之间的任何不确定细节和纠正重建结果中的细小区域。 (2)提出了一个多阶段集成模块,以学习多个阶段的多对比度融合的响应,获得融合表示之间的依赖性,并提高其表示能力。 (3)在FastMRI和Clinical \ textit {in Vivo}数据集上进行了各种最先进的多对比度SR方法的广泛实验,证明了我们模型的优势。
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In MRI, restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3D HR image acquisition typically requests long scan time and, results in small spatial coverage and low SNR. Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach a scale-specific projection between LR and HR images, thus these methods can only deal with a fixed up-sampling rate. For achieving different up-sampling rates, multiple SR networks have to be built up respectively, which is very time-consuming and resource-intensive. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the reconstruction of HR images with different up-scaling rates is defined as learning a continuous implicit voxel function from the observed LR images. Then the SR task is converted to represent the implicit voxel function via deep neural networks from a set of paired HR-LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Due to the continuity of the learned function, a single ArSSR model can achieve arbitrary up-sampling rate reconstruction of HR images from any input LR image after training. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
translated by 谷歌翻译
磁共振成像(MRI)的核心问题是加速度和图像质量之间的折衷。图像重建和超分辨率是磁共振成像(MRI)中的两个重要技术。目前的方法旨在单独执行这些任务,忽略它们之间的相关性。在这项工作中,我们为联合MRI重建和超分辨率提出了一个端到端的任务变压器网络(T $ ^ 2 $ net),它允许在多项任务之间共享表示和特征传输以实现更高质量的,来自高度遮盖率和退化的MRI数据的无序和运动伪影的图像。我们的框架与重建和超分辨率相结合,分为两个子分支,其功能表示为查询和键。具体地,我们鼓励两个任务之间的联合特征学习,从而传输准确的任务信息。我们首先使用两个单独的CNN分支来提取特定于任务的功能。然后,任务变压器模块旨在嵌入和综合两个任务之间的相关性。实验结果表明,我们的多任务模型显着优于高级顺序方法,包括定量和定性。
translated by 谷歌翻译
Low-field (LF) MRI scanners have the power to revolutionize medical imaging by providing a portable and cheaper alternative to high-field MRI scanners. However, such scanners are usually significantly noisier and lower quality than their high-field counterparts. The aim of this paper is to improve the SNR and overall image quality of low-field MRI scans to improve diagnostic capability. To address this issue, we propose a Nested U-Net neural network architecture super-resolution algorithm that outperforms previously suggested deep learning methods with an average PSNR of 78.83 and SSIM of 0.9551. We tested our network on artificial noisy downsampled synthetic data from a major T1 weighted MRI image dataset called the T1-mix dataset. One board-certified radiologist scored 25 images on the Likert scale (1-5) assessing overall image quality, anatomical structure, and diagnostic confidence across our architecture and other published works (SR DenseNet, Generator Block, SRCNN, etc.). We also introduce a new type of loss function called natural log mean squared error (NLMSE). In conclusion, we present a more accurate deep learning method for single image super-resolution applied to synthetic low-field MRI via a Nested U-Net architecture.
translated by 谷歌翻译
具有高分辨率的视网膜光学相干断层扫描术(八八)对于视网膜脉管系统的定量和分析很重要。然而,八颗图像的分辨率与相同采样频率的视野成反比,这不利于临床医生分析较大的血管区域。在本文中,我们提出了一个新型的基于稀疏的域适应超分辨率网络(SASR),以重建现实的6x6 mm2/低分辨率/低分辨率(LR)八八粒图像,以重建高分辨率(HR)表示。更具体地说,我们首先对3x3 mm2/高分辨率(HR)图像进行简单降解,以获得合成的LR图像。然后,采用一种有效的注册方法在6x6 mm2图像中以其相应的3x3 mm2图像区域注册合成LR,以获得裁切的逼真的LR图像。然后,我们提出了一个多级超分辨率模型,用于对合成数据进行全面监督的重建,从而通过生成的对流策略指导现实的LR图像重建现实的LR图像,该策略允许合成和现实的LR图像可以在特征中统一。领域。最后,新型的稀疏边缘感知损失旨在动态优化容器边缘结构。在两个八八集中进行的广泛实验表明,我们的方法的性能优于最先进的超分辨率重建方法。此外,我们还研究了重建结果对视网膜结构分割的性能,这进一步验证了我们方法的有效性。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
在本文中,我们开发了一种高效的回顾性深度学习方法,称为堆叠U-网,具有自助前沿,解决MRI中刚性运动伪影的问题。拟议的工作利用损坏的图像本身使用额外的知识前瞻,而无需额外的对比度数据。所提出的网络通过共享来自相同失真对象的连续片的辅助信息来学习错过的结构细节。我们进一步设计了一种堆叠的U-网的细化,便于保持图像空间细节,从而提高了像素到像素依赖性。为了执行网络培训,MRI运动伪像的模拟是不可避免的。我们使用各种类型的图像前瞻呈现了一个密集的分析:来自同一主题的其他图像对比的提出的自助前锋和前锋。实验分析证明了自助前锋的有效性和可行性,因为它不需要任何进一步的数据扫描。
translated by 谷歌翻译
自从Dong等人的第一个成功以来,基于深度学习的方法已在单像超分辨率领域中占主导地位。这取代了使用深神经网络的传统基于稀疏编码方法的所有手工图像处理步骤。与明确创建高/低分辨率词典的基于稀疏编码的方法相反,基于深度学习的方法中的词典被隐式地作为多种卷积的非线性组合被隐式获取。基于深度学习方法的缺点是,它们的性能因与训练数据集(室外图像)不同的图像而降低。我们提出了一个带有深层字典(SRDD)的端到端超分辨率网络,在该网络中,高分辨率词典在不牺牲深度学习优势的情况下明确学习。广泛的实验表明,高分辨率词典的显式学习使网络在维持内域测试图像的性能的同时更加强大。
translated by 谷歌翻译
Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
translated by 谷歌翻译
The feed-forward architectures of recently proposed deep super-resolution networks learn representations of low-resolution inputs, and the non-linear mapping from those to high-resolution output. However, this approach does not fully address the mutual dependencies of low-and high-resolution images. We propose Deep Back-Projection Networks (DBPN), that exploit iterative up-and downsampling layers, providing an error feedback mechanism for projection errors at each stage. We construct mutuallyconnected up-and down-sampling stages each of which represents different types of image degradation and highresolution components. We show that extending this idea to allow concatenation of features across up-and downsampling stages (Dense DBPN) allows us to reconstruct further improve super-resolution, yielding superior results and in particular establishing new state of the art results for large scaling factors such as 8× across multiple data sets.
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
磁共振成像(MRI)在临床中很重要,可以产生高分辨率图像进行诊断,但其获取时间很长,对于高分辨率图像。基于深度学习的MRI超级分辨率方法可以减少扫描时间而无需复杂的序列编程,但由于训练数据和测试数据之间的差异,可能会产生其他伪像。数据一致性层可以改善深度学习结果,但需要原始的K空间数据。在这项工作中,我们提出了基于幅度图像的数据一致性深度学习MRI超级分辨率方法,以提高超级分辨率图像的质量,而无需原始K空间数据。我们的实验表明,与没有数据一致性模块的同一卷积神经网络(CNN)块相比,提出的方法可以改善超级分辨率图像的NRMSE和SSIM。
translated by 谷歌翻译
Recent research on super-resolution has progressed with the development of deep convolutional neural networks (DCNN). In particular, residual learning techniques exhibit improved performance. In this paper, we develop an enhanced deep super-resolution network (EDSR) with performance exceeding those of current state-of-the-art SR methods. The significant performance improvement of our model is due to optimization by removing unnecessary modules in conventional residual networks. The performance is further improved by expanding the model size while we stabilize the training procedure. We also propose a new multi-scale deep super-resolution system (MDSR) and training method, which can reconstruct high-resolution images of different upscaling factors in a single model. The proposed methods show superior performance over the state-of-the-art methods on benchmark datasets and prove its excellence by winning the NTIRE2017 Super-Resolution Challenge [26].
translated by 谷歌翻译
在2D多板磁共振(MR)采集中,平面信号通常比面内信号较低。尽管当代超分辨率(SR)方法旨在恢复基本的高分辨率量,但估计的高频信息是通过端到端数据驱动的培训隐含的,而不是明确说明和寻求。为了解决这个问题,我们根据完美的重建过滤库重新构架SR问题声明,使我们能够识别并直接估计缺失的信息。在这项工作中,我们提出了一种两阶段的方法,以近似于与特定扫描的各向异性采集相对应的完美重建过滤库。在第1阶段,我们使用梯度下降估算缺失的过滤器,在第2阶段,我们使用深网来学习从粗系数到细节系数的映射。此外,提出的公式不依赖外部训练数据,从而规避了对域移位校正的需求。在我们的方法下,特别是在“切片差距”方案中提高了SR性能,这可能是由于框架施加的解决方案空间的限制。
translated by 谷歌翻译
Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-ofthe-art single image super-resolution approaches.
translated by 谷歌翻译
在临床实践中,由于较短的获取时间和较低的存储成本,通常使用了平面分辨率低的各向异性体积医学图像。然而,粗分辨率可能导致医生或计算机辅助诊断算法的医学诊断困难。基于深度学习的体积超分辨率(SR)方法是改善分辨率的可行方法,其核心是卷积神经网络(CNN)。尽管进展最近,但这些方法受到卷积运算符的固有属性的限制,卷积运算符忽略内容相关性,无法有效地对远程依赖性进行建模。此外,大多数现有方法都使用伪配合的体积进行训练和评估,其中伪低分辨率(LR)体积是通过简单的高分辨率(HR)对应物的简单降解而产生的。但是,伪和现实LR之间的域间隙导致这些方法在实践中的性能不佳。在本文中,我们构建了第一个公共实用数据集RPLHR-CT作为体积SR的基准,并通过重新实现四种基于CNN的最先进的方法来提供基线结果。考虑到CNN的固有缺点,我们还提出了基于注意力机制的变压器体积超分辨率网络(TVSRN),完全与卷积分配。这是首次将纯变压器用于CT体积SR的研究。实验结果表明,TVSRN在PSNR和SSIM上的所有基准都显着胜过。此外,TVSRN方法在图像质量,参数数量和运行时间之间取得了更好的权衡。数据和代码可在https://github.com/smilenaxx/rplhr-ct上找到。
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译