现代数码相机和智能手机主要依赖于图像信号处理(ISP)管道,从而产生逼真的彩色RGB图像。然而,与DSLR相机相比,由于其物理限制,在许多便携式移动设备中通常可以在许多便携式移动设备中获得低质量的图像。低质量的图像具有多种降级,即,由于相机滤色器阵列,由于相机滤色器阵列,由于较小的摄像机传感器而导致的低分辨率,磁割模式,并且其余信息因噪声损坏而导致的镶嵌图案。这种降级限制了从单个低分辨率(LR)图像中恢复高分辨率(HR)图像细节的电流单图像超分辨率(SISR)方法的性能。在这项工作中,我们提出了一种原始的突发超分辨率迭代卷积神经网络(RBSricnn),其作为前向(物理)模型的整体沿着突发拍摄管道。与现有的黑盒数据驱动方法相比,所提出的突发SR方案解决了经典图像正则化,凸优化和深度学习技术的问题。所提出的网络通过中间SR估计的迭代细化产生最终输出。我们展示了我们提出的方法在定量和定性实验中的有效性,这些实验概括为具有可用于培训的ONL合成突发数据的真实LR突发输入。
translated by 谷歌翻译
尽管目前基于深度学习的方法在盲目的单图像超分辨率(SISR)任务中已获得了有希望的表现,但其中大多数主要集中在启发式上构建多样化的网络体系结构,并更少强调对Blur之间的物理发电机制的明确嵌入内核和高分辨率(HR)图像。为了减轻这个问题,我们提出了一个模型驱动的深神经网络,称为blind SISR。具体而言,为了解决经典的SISR模型,我们提出了一种简单的效果迭代算法。然后,通过将所涉及的迭代步骤展开到相应的网络模块中,我们自然构建了KXNET。所提出的KXNET的主要特异性是整个学习过程与此SISR任务的固有物理机制完全合理地集成在一起。因此,学习的模糊内核具有清晰的物理模式,并且模糊内核和HR图像之间的相互迭代过程可以很好地指导KXNET沿正确的方向发展。关于合成和真实数据的广泛实验很好地证明了我们方法的卓越准确性和一般性超出了当前代表性的最先进的盲目SISR方法。代码可在:\ url {https://github.com/jiahong-fu/kxnet}中获得。
translated by 谷歌翻译
由智能手机和中端相机捕获的照片的空间分辨率和动态范围有限,在饱和区域中未充满刺激的区域和颜色人工制品中的嘈杂响应。本文介绍了第一种方法(据我们所知),以重建高分辨率,高动态范围的颜色图像,这些颜色来自带有曝光括号的手持相机捕获的原始照相爆发。该方法使用图像形成的物理精确模型来结合迭代优化算法,用于求解相应的逆问题和学习的图像表示,以进行健壮的比对,并以前的自然图像。所提出的算法很快,与基于最新的学习图像恢复方法相比,内存需求较低,并且从合成但逼真的数据终止学习的特征。广泛的实验证明了其出色的性能,具有最多$ \ times 4 $的超分辨率因子在野外拍摄的带有手持相机的真实照片,以及对低光条件,噪音,摄像机摇动和中等物体运动的高度鲁棒性。
translated by 谷歌翻译
突发超级分辨率(SR)提供了从低质量图像恢复丰富细节的可能性。然而,由于实际应用中的低分辨率(LR)图像具有多种复杂和未知的降级,所以现有的非盲(例如,双臂)设计的网络通常导致恢复高分辨率(HR)图像的严重性能下降。此外,处理多重未对准的嘈杂的原始输入也是具有挑战性的。在本文中,我们解决了从现代手持设备获取的原始突发序列重建HR图像的问题。中央观点是一个内核引导策略,可以用两个步骤解决突发SR:内核建模和HR恢复。前者估计来自原始输入的突发内核,而后者基于估计的内核预测超分辨图像。此外,我们引入了内核感知可变形对准模块,其可以通过考虑模糊的前沿而有效地对准原始图像。对综合和现实世界数据集的广泛实验表明,所提出的方法可以在爆发SR问题中对最先进的性能进行。
translated by 谷歌翻译
在实践中,图像可以包含不同颜色通道的不同噪声,这不受现有的超分辨率方法确认。在本文中,我们通过关注颜色通道来提出超声噪音图像。噪声统计从输入的低分辨率图像盲目地估计,并且用于以数据成本为不同颜色信道分配不同权重。通过与自适应权重相关联的核规范最小化,通过核标准最小化强制强制执行视觉数据的隐式低秩结构,这将作为正则化术语添加到成本中。另外,通过涉及投影到PCA的另一个正则化术语将图像的多尺度细节添加到模型中,该术语是使用在输入图像的不同尺度上提取的类似斑块构造的。结果展示了在实际方案中的方法的超声解决能力。
translated by 谷歌翻译
本文介绍了在混合高斯 - 突破噪声条件下重建高分辨率(HR)LF图像的GPU加速计算框架。主要重点是考虑处理速度和重建质量的高性能方法。从统计的角度来看,我们得出了一个联合$ \ ell^1 $ - $ \ ell^2 $数据保真度,用于惩罚人力资源重建错误,考虑到混合噪声情况。对于正则化,我们采用了加权非本地总变异方法,这使我们能够通过适当的加权方案有效地实现LF图像。我们表明,乘数算法(ADMM)的交替方向方法可用于简化计算复杂性,并在GPU平台上导致高性能并行计算。对合成4D LF数据集和自然图像数据集进行了广泛的实验,以验证提出的SR模型的鲁棒性并评估加速优化器的性能。实验结果表明,与最先进的方法相比,我们的方法在严重的混合噪声条件下实现了更好的重建质量。此外,提议的方法克服了处理大规模SR任务的先前工作的局限性。虽然适合单个现成的GPU,但建议的加速器提供的平均加速度为2.46 $ \ times $和1.57 $ \ times $,分别为$ \ times 2 $和$ \ times 3 $ SR任务。此外,与CPU执行相比,达到$ 77 \ times $的加速。
translated by 谷歌翻译
在本文中,我们考虑了基于参考的超分辨率(REFSR)中的两个具有挑战性的问题,(i)如何选择适当的参考图像,以及(ii)如何以一种自我监督的方式学习真实世界RefSR。特别是,我们从双摄像头Zooms(SelfDZSR)观察到现实世界图像SR的新颖的自我监督学习方法。考虑到多台相机在现代智能手机中的普及,可以自然利用越来越多的缩放(远摄)图像作为指导较小的变焦(短对焦)图像的SR。此外,SelfDZSR学习了一个深层网络,以获得短对焦图像的SR结果,以具有与远摄图像相同的分辨率。为此,我们将远摄图像而不是其他高分辨率图像作为监督信息,然后从中选择中心贴片作为对相应的短对焦图像补丁的引用。为了减轻短对焦低分辨率(LR)图像和远摄地面真相(GT)图像之间未对准的影响,我们设计了辅助LR发电机,并将GT映射到辅助LR,同时保持空间位置不变。 。然后,可以利用辅助-LR通过建议的自适应空间变压器网络(ADASTN)将LR特征变形,并将REF特征与GT匹配。在测试过程中,可以直接部署SelfDZSR,以使用远摄映像的引用来超级解决整个短对焦图像。实验表明,我们的方法可以针对最先进的方法实现更好的定量和定性性能。代码可在https://github.com/cszhilu1998/selfdzsr上找到。
translated by 谷歌翻译
在本文中,我们研究了实用的时空视频超分辨率(STVSR)问题,该问题旨在从低型低分辨率的低分辨率模糊视频中生成高富含高分辨率的夏普视频。当使用低填充和低分辨率摄像头记录快速动态事件时,通常会发生这种问题,而被捕获的视频将遭受三个典型问题:i)运动模糊发生是由于曝光时间内的对象/摄像机运动而发生的; ii)当事件时间频率超过时间采样的奈奎斯特极限时,运动异叠是不可避免的; iii)由于空间采样率低,因此丢失了高频细节。这些问题可以通过三个单独的子任务的级联来缓解,包括视频脱张,框架插值和超分辨率,但是,这些问题将无法捕获视频序列之间的空间和时间相关性。为了解决这个问题,我们通过利用基于模型的方法和基于学习的方法来提出一个可解释的STVSR框架。具体而言,我们将STVSR作为联合视频脱张,框架插值和超分辨率问题,并以另一种方式将其作为两个子问题解决。对于第一个子问题,我们得出了可解释的分析解决方案,并将其用作傅立叶数据变换层。然后,我们为第二个子问题提出了一个反复的视频增强层,以进一步恢复高频细节。广泛的实验证明了我们方法在定量指标和视觉质量方面的优势。
translated by 谷歌翻译
当前的深层图像超分辨率(SR)方法试图从下采样的图像或假设简单高斯内核和添加噪声中降解来恢复高分辨率图像。但是,这种简单的图像处理技术代表了降低图像分辨率的现实世界过程的粗略近似。在本文中,我们提出了一个更现实的过程,通过引入新的内核对抗学习超分辨率(KASR)框架来处理现实世界图像SR问题,以降低图像分辨率。在提议的框架中,降解内核和噪声是自适应建模的,而不是明确指定的。此外,我们还提出了一个迭代监督过程和高频选择性目标,以进一步提高模型SR重建精度。广泛的实验验证了对现实数据集中提出的框架的有效性。
translated by 谷歌翻译
目前基于学习的单图像超分辨率(SISR)算法由于假定的Daradada-Tion过程中的偏差而导致的实际数据up到实际数据。常规的劣化过程考虑在高分辨率(HR)图像上应用模糊,噪声和下采样(通常是较大的采样)以合成低分辨率(LR)对应物。然而,很少有用于退化建模的作品已经采取了光学成像系统的物理方面。在本文中,我们光学分析了成像系统,并探索了空间频域的实际LR-HR对的特征。通过考虑optiopticsandsordegration,我们制定真实的物理启发的退化模型;成像系统的物理劣化被建模为低通滤波器,其截止频率由物体距离,焦距的更焦距和图像传感器的像素尺寸。特别是,我们建议使用卷积神经网络(CNN)来学习现实世界劣化过程的截止频率。然后应用学习的网络从未配对的HR图像合成LR图像。稍后使用合成的HR-LR图像对培训SISR网络。我们评估所提出的不同成像系统捕获的现实世界图像中提出的退化模型的有效性和泛化能力。实验结果展示了通过使用传统的退化模型使用我们的合成数据训练的SISR网络通过传统的降级模型对网络进行了有利的。此外,我们的结果与通过使用现实世界LR-HR对训练的相同网络获得的结果相当,这是在真实场景中获得的具有挑战性。
translated by 谷歌翻译
在本文中,我们提出了D2C-SR,这是一个新颖的框架,用于实现现实世界图像超级分辨率的任务。作为一个不适的问题,超分辨率相关任务的关键挑战是给定的低分辨率输入可能会有多个预测。大多数基于经典的深度学习方法都忽略了基本事实,缺乏对基础高频分布的明确建模,从而导致结果模糊。最近,一些基于GAN或学习的超分辨率空间的方法可以生成模拟纹理,但不能保证具有低定量性能的纹理的准确性。重新思考这两者,我们以离散形式了解了基本高频细节的分布,并提出了两阶段的管道:分歧阶段到收敛阶段。在发散阶段,我们提出了一个基于树的结构深网作为差异骨干。提出了发散损失,以鼓励基于树的网络产生的结果,以分解可能的高频表示,这是我们对基本高频分布进行离散建模的方式。在收敛阶段,我们分配空间权重以融合这些不同的预测,以获得更准确的细节,以获取最终输出。我们的方法为推理提供了方便的端到端方式。我们对几个现实世界基准进行评估,包括具有X8缩放系数的新提出的D2CrealSR数据集。我们的实验表明,D2C-SR针对最先进的方法实现了更好的准确性和视觉改进,参数编号明显较少,并且我们的D2C结构也可以作为广义结构应用于其他一些方法以获得改进。我们的代码和数据集可在https://github.com/megvii-research/d2c-sr上找到
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
Reference-based Super-resolution (RefSR) approaches have recently been proposed to overcome the ill-posed problem of image super-resolution by providing additional information from a high-resolution image. Multi-reference super-resolution extends this approach by allowing more information to be incorporated. This paper proposes a 2-step-weighting posterior fusion approach to combine the outputs of RefSR models with multiple references. Extensive experiments on the CUFED5 dataset demonstrate that the proposed methods can be applied to various state-of-the-art RefSR models to get a consistent improvement in image quality.
translated by 谷歌翻译
为了解决高光谱图像超分辨率(HSISR)的不良问题,通常方法是使用高光谱图像(HSIS)的先前信息作为正则化术语来限制目标函数。使用手工制作前沿的基于模型的方法无法完全表征HSI的性质。基于学习的方法通常使用卷积神经网络(CNN)来学习HSI的隐式前导者。然而,CNN的学习能力是有限的,它仅考虑HSI的空间特性并忽略光谱特性,并且卷积对远程依赖性建模无效。还有很多改进的空间。在本文中,我们提出了一种新颖的HSISR方法,该方法使用变压器而不是CNN来学习HSI之前。具体地,我们首先使用近端梯度算法来解决HSISR模型,然后使用展开网络来模拟迭代解决方案过程。变压器的自我注意层使其具有空间全局互动的能力。此外,我们在变压器层后面添加3D-CNN,以更好地探索HSIS的时空相关性。两个广泛使用的HSI数据集和实际数据集的定量和视觉结果证明,与所有主流算法相比,所提出的方法实现了相当大的增益,包括最竞争力的传统方法和最近提出的基于深度学习的方法。
translated by 谷歌翻译
盲目图像超分辨率(SR)的典型方法通过直接估算或学习潜在空间中的降解表示来处理未知的降解。这些方法的一个潜在局限性是,他们假设可以通过整合各种手工降解(例如,比科比克下采样)来模拟未知的降解,这不一定是正确的。现实世界中的降解可能超出了手工降解的模拟范围,这被称为新型降解。在这项工作中,我们建议学习一个潜在的降解空间,可以将其从手工制作的(基本)降解中推广到新的降解。然后将其在此潜在空间中获得的新型降解的表示形式被利用,以生成与新型降解一致的降级图像,以构成SR模型的配对训练数据。此外,我们执行各种推断,以使潜在表示空间中的降解后降解与先前的分布(例如高斯分布)相匹配。因此,我们能够采样更多的高质量表示以进行新的降级,以增加SR模型的训练数据。我们对合成数据集和现实数据集进行了广泛的实验,以验证我们在新型降解中盲目超分辨率的有效性和优势。
translated by 谷歌翻译
对于真实世界形象超分辨率的深度学习方法,最关键的问题是对训练的配对低和高分辨率图像是否准确反映了真实相机的采样过程。由现有的退化模型(例如,双臂下采样)合成的低分辨率(LR $ \ SIM $ HR)图像对偏离现实中的模型;因此,当应用于真实图像时,由这些合成的LR $ \ SIM $ HR图像对训练的超分辨率CNN不会表现良好。为了解决问题,我们提出了一种新的数据采集过程,使用真实相机拍摄一大集的LR $ \ SIM $ HR图像对。图像显示在超高质量屏幕上并以不同的分辨率捕获。由此产生的LR $ \ SIM $ HR图像对可以通过新颖的空间频率二元域注册方法与非常高的子像素精度对齐,因此它们为超级分辨率的学习任务提供了高质量的培训数据。此外,捕获的HR图像和原始数字图像提供了双引用来提高学习性能。实验结果表明,我们的LR $ \ SIM $ HR DataSet培训超分辨率CNN,而不是文献中的其他数据集培训更高的图像质量。
translated by 谷歌翻译
本文提出了一种通过深层插件(PNP)方法恢复数字视频的新方法。在贝叶斯形式主义下,该方法包括在交替的优化方案中使用深度卷积的降级网络代替先前的近端操作员。我们通过直接应用该方法来恢复降级视频观察结果的数字视频,从而将自己与先前的PNP工作区分开来。这样,可以将经过验证训练的网络重新用于其他视频修复任务。我们在视频脱张,超分辨率和随机缺失像素的插值方面的实验都显示出明显的好处,因为它使用专门为视频denoising设计的网络,因为它可以产生更好的恢复性能和更好的时间稳定性。使用相同的PNP公式。此外,我们的方法比较比较在序列的每个帧上分别应用不同的最新PNP方案。这在视频修复领域打开了新的观点。
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
现实世界图像超分辨率(SR)的关键挑战是在低分辨率(LR)图像中恢复具有复杂未知降解(例如,下采样,噪声和压缩)的缺失细节。大多数以前的作品还原图像空间中的此类缺失细节。为了应对自然图像的高度多样性,他们要么依靠难以训练和容易训练和伪影的不稳定的甘体,要么诉诸于通常不可用的高分辨率(HR)图像中的明确参考。在这项工作中,我们提出了匹配SR(FEMASR)的功能,该功能在更紧凑的特征空间中恢复了现实的HR图像。与图像空间方法不同,我们的FEMASR通过将扭曲的LR图像{\ IT特征}与我们预读的HR先验中的无失真性HR对应物匹配来恢复HR图像,并解码匹配的功能以获得现实的HR图像。具体而言,我们的人力资源先验包含一个离散的特征代码簿及其相关的解码器,它们在使用量化的生成对抗网络(VQGAN)的HR图像上预估计。值得注意的是,我们在VQGAN中结合了一种新型的语义正则化,以提高重建图像的质量。对于功能匹配,我们首先提取由LR编码器组成的LR编码器的LR功能,然后遵循简单的最近邻居策略,将其与预读的代码簿匹配。特别是,我们为LR编码器配备了与解码器的残留快捷方式连接,这对于优化功能匹配损耗至关重要,还有助于补充可能的功能匹配错误。实验结果表明,我们的方法比以前的方法产生更现实的HR图像。代码以\ url {https://github.com/chaofengc/femasr}发布。
translated by 谷歌翻译
极度依赖于从划痕的模型的降级或优化的降解或优化的迭代估计,现有的盲超分辨率(SR)方法通常是耗时和效率较低,因为退化的估计从盲初始化进行并且缺乏可解释降解前沿。为了解决它,本文提出了一种使用端到端网络的盲SR的过渡学习方法,没有任何额外的推断中的额外迭代,并探讨了未知降级的有效表示。首先,我们分析并证明降解的过渡性作为可解释的先前信息,以间接推断出未知的降解模型,包括广泛使用的添加剂和卷曲降解。然后,我们提出了一种新颖的过渡性学习方法,用于盲目超分辨率(TLSR),通过自适应地推断过渡转换功能来解决未知的降级而没有推断的任何迭代操作。具体地,端到端TLSR网络包括一定程度的过渡性(点)估计网络,同一性特征提取网络和过渡学习模块。对盲人SR任务的定量和定性评估表明,拟议的TLSR实现了优异的性能,并且对最先进的盲人SR方法的复杂性较少。该代码可在github.com/yuanfeihuang/tlsr获得。
translated by 谷歌翻译