改善磁共振(MR)图像数据的分辨率对于计算机辅助诊断和大脑功能分析至关重要。更高的分辨率有助于捕获更详细的内容,但通常会导致较低的信噪比和更长的扫描时间。为此,MR Image超级分辨率已成为近期广泛利益的主题。现有作品建立了广泛的深层模型,该模型具有基于卷积神经网络(CNN)的常规体系结构。在这项工作中,为了进一步推进该研究领域,我们尽早努力建立一个基于变压器的MR图像超分辨率框架,并仔细设计了探索有价值的领域的先验知识。具体而言,我们考虑了包括高频结构的两倍领域先验和模式间环境,并建立了一种新颖的变压器体系结构,称为跨模式高频变压器(COHF-T),以将此类先验引入超分辨率(LR)MR图像的超级分辨。两个数据集的实验表明COHF-T可以实现新的最新性能。
translated by 谷歌翻译
Informative features play a crucial role in the single image super-resolution task. Channel attention has been demonstrated to be effective for preserving information-rich features in each layer. However, channel attention treats each convolution layer as a separate process that misses the correlation among different layers. To address this problem, we propose a new holistic attention network (HAN), which consists of a layer attention module (LAM) and a channel-spatial attention module (CSAM), to model the holistic interdependencies among layers, channels, and positions. Specifically, the proposed LAM adaptively emphasizes hierarchical features by considering correlations among layers. Meanwhile, CSAM learns the confidence at all the positions of each channel to selectively capture more informative features. Extensive experiments demonstrate that the proposed HAN performs favorably against the state-ofthe-art single image super-resolution approaches.
translated by 谷歌翻译
在相应的辅助对比的指导下,目标对比度的超级分辨磁共振(MR)图像(提供了其他解剖信息)是快速MR成像的新解决方案。但是,当前的多对比超分辨率(SR)方法倾向于直接连接不同的对比度,从而忽略了它们在不同的线索中的关系,例如在高强度和低强度区域中。在这项研究中,我们提出了一个可分离的注意网络(包括高强度的优先注意力和低强度分离注意力),名为SANET。我们的卫生网可以借助辅助对比度探索“正向”和“反向”方向中高强度和低强度区域的区域,同时学习目标对比MR的SR的更清晰的解剖结构和边缘信息图片。 SANET提供了三个吸引人的好处:(1)这是第一个探索可分离的注意机制的模型,该机制使用辅助对比来预测高强度和低强度区域,将更多的注意力转移到精炼这些区域和这些区域之间的任何不确定细节和纠正重建结果中的细小区域。 (2)提出了一个多阶段集成模块,以学习多个阶段的多对比度融合的响应,获得融合表示之间的依赖性,并提高其表示能力。 (3)在FastMRI和Clinical \ textit {in Vivo}数据集上进行了各种最先进的多对比度SR方法的广泛实验,证明了我们模型的优势。
translated by 谷歌翻译
使用卷积神经网络(CNN)的最先进的磁共振(MR)图像超分辨率方法(ISR)由于CNN的空间覆盖率有限,因此在有限的上下文信息中利用有限的上下文信息。Vision Transformers(VIT)学习更好的全球环境,这有助于产生优质的HR图像。我们将CNN的本地信息和来自VIT的全局信息结合在一起,以获得图像超级分辨率和输出超级分辨率的图像,这些图像的质量比最先进的方法所产生的质量更高。我们通过多个新颖的损失函数包括额外的约束,这些损失功能将结构和纹理信息从低分辨率到高分辨率图像。
translated by 谷歌翻译
卷积神经网络(CNNS)成功地进行了压缩图像感测。然而,由于局部性和重量共享的归纳偏差,卷积操作证明了建模远程依赖性的内在限制。变压器,最初作为序列到序列模型设计,在捕获由于基于自我关注的架构而捕获的全局背景中,即使它可以配备有限的本地化能力。本文提出了一种混合框架,一个混合框架,其集成了从CNN提供的借用的优点以及变压器提供的全局上下文,以获得增强的表示学习。所提出的方法是由自适应采样和恢复组成的端到端压缩图像感测方法。在采样模块中,通过学习的采样矩阵测量图像逐块。在重建阶段,将测量投射到双杆中。一个是用于通过卷积建模邻域关系的CNN杆,另一个是用于采用全球自我关注机制的变压器杆。双分支结构是并发,并且本地特征和全局表示在不同的分辨率下融合,以最大化功能的互补性。此外,我们探索一个渐进的战略和基于窗口的变压器块,以降低参数和计算复杂性。实验结果表明了基于专用变压器的架构进行压缩感测的有效性,与不同数据集的最先进方法相比,实现了卓越的性能。
translated by 谷歌翻译
通过利用大型内核分解和注意机制,卷积神经网络(CNN)可以在许多高级计算机视觉任务中与基于变压器的方法竞争。但是,由于远程建模的优势,具有自我注意力的变压器仍然主导着低级视野,包括超分辨率任务。在本文中,我们提出了一个基于CNN的多尺度注意网络(MAN),该网络由多尺度的大内核注意力(MLKA)和一个封闭式的空间注意单元(GSAU)组成,以提高卷积SR网络的性能。在我们的MLKA中,我们使用多尺度和栅极方案纠正LKA,以在各种粒度水平上获得丰富的注意图,从而共同汇总了全局和局部信息,并避免了潜在的阻塞伪像。在GSAU中,我们集成了栅极机制和空间注意力,以消除不必要的线性层和汇总信息丰富的空间环境。为了确认我们的设计的有效性,我们通过简单地堆叠不同数量的MLKA和GSAU来评估具有多种复杂性的人。实验结果表明,我们的人可以在最先进的绩效和计算之间实现各种权衡。代码可从https://github.com/icandle/man获得。
translated by 谷歌翻译
具有高分辨率(HR)的磁共振成像(MRI)提供了更详细的信息,以进行准确的诊断和定量图像分析。尽管取得了重大进展,但大多数现有的医学图像重建网络都有两个缺陷:1)所有这些缺陷都是在黑盒原理中设计的,因此缺乏足够的解释性并进一步限制其实际应用。可解释的神经网络模型引起了重大兴趣,因为它们在处理医学图像时增强了临床实践所需的可信赖性。 2)大多数现有的SR重建方法仅使用单个对比度或使用简单的多对比度融合机制,从而忽略了对SR改进至关重要的不同对比度之间的复杂关系。为了解决这些问题,在本文中,提出了一种新颖的模型引导的可解释的深层展开网络(MGDUN),用于医学图像SR重建。模型引导的图像SR重建方法求解手动设计的目标函数以重建HR MRI。我们通过将MRI观察矩阵和显式多对比度关系矩阵考虑到末端到端优化期间,将迭代的MGDUN算法展示为新型模型引导的深层展开网络。多对比度IXI数据集和Brats 2019数据集进行了广泛的实验,证明了我们提出的模型的优势。
translated by 谷歌翻译
近年来,压缩图像超分辨率已引起了极大的关注,其中图像被压缩伪像和低分辨率伪影降解。由于复杂的杂化扭曲变形,因此很难通过简单的超分辨率和压缩伪像消除掉的简单合作来恢复扭曲的图像。在本文中,我们向前迈出了一步,提出了层次的SWIN变压器(HST)网络,以恢复低分辨率压缩图像,该图像共同捕获分层特征表示并分别用SWIN Transformer增强每个尺度表示。此外,我们发现具有超分辨率(SR)任务的预处理对于压缩图像超分辨率至关重要。为了探索不同的SR预审查的影响,我们将常用的SR任务(例如,比科比奇和不同的实际超分辨率仿真)作为我们的预处理任务,并揭示了SR在压缩的图像超分辨率中起不可替代的作用。随着HST和预训练的合作,我们的HST在AIM 2022挑战中获得了低质量压缩图像超分辨率轨道的第五名,PSNR为23.51db。广泛的实验和消融研究已经验证了我们提出的方法的有效性。
translated by 谷歌翻译
最近,已经开发了许多算法来解决光场超分辨率(LFSR)的问题,即超声分辨率的低分辨率光场,以获得高分辨率视图。尽管提供了令人鼓舞的结果,但这些方法都是基于卷积的,并且在副孔径图像的全局关系模型中自然弱,这必然是表征光场的固有结构。在本文中,我们通过将LFSR视为序列到序列重建任务,提出了一种基于变压器的新型制剂。特别地,我们的模型将每个垂直或水平角度视图的子孔图像视为序列,并通过空间角局部增强的自我关注层在每个序列内建立远程几何依赖性,其维护每个的局部性子光圈图像也是如此。此外,为了更好地恢复图像细节,我们通过利用光场的梯度图来引导序列学习来提出细节保存的变压器(称为DPT)。 DPT由两个分支组成,每个分支机构与变压器相关联,用于从原始或梯度图像序列学习。这两个分支机构最终融合以获得重建的综合特征表示。评估在许多光场数据集中进行,包括现实世界场景和合成数据。该方法与其他最先进的方案相比,实现了卓越的性能。我们的代码可公开提供:https://github.com/bitszwang/dpt。
translated by 谷歌翻译
卷积神经网络在过去十年中允许在单个图像超分辨率(SISR)中的显着进展。在SISR最近的进展中,关注机制对于高性能SR模型至关重要。但是,注意机制仍然不清楚为什么它在SISR中的工作原理。在这项工作中,我们试图量化和可视化SISR中的注意力机制,并表明并非所有关注模块都同样有益。然后,我们提出了关注网络(A $ ^ 2 $ n)的注意力,以获得更高效和准确的SISR。具体来说,$ ^ 2 $ n包括非关注分支和耦合注意力分支。提出了一种动态注意力模块,为这两个分支产生权重,以动态地抑制不需要的注意力调整,其中权重根据输入特征自适应地改变。这允许注意模块专门从事惩罚的有益实例,从而大大提高了注意力网络的能力,即几个参数开销。实验结果表明,我们的最终模型A $ ^ 2 $ n可以实现与类似尺寸的最先进网络相比的卓越的权衡性能。代码可以在https://github.com/haoyuc/a2n获得。
translated by 谷歌翻译
Recently, Transformer-based image restoration networks have achieved promising improvements over convolutional neural networks due to parameter-independent global interactions. To lower computational cost, existing works generally limit self-attention computation within non-overlapping windows. However, each group of tokens are always from a dense area of the image. This is considered as a dense attention strategy since the interactions of tokens are restrained in dense regions. Obviously, this strategy could result in restricted receptive fields. To address this issue, we propose Attention Retractable Transformer (ART) for image restoration, which presents both dense and sparse attention modules in the network. The sparse attention module allows tokens from sparse areas to interact and thus provides a wider receptive field. Furthermore, the alternating application of dense and sparse attention modules greatly enhances representation ability of Transformer while providing retractable attention on the input image.We conduct extensive experiments on image super-resolution, denoising, and JPEG compression artifact reduction tasks. Experimental results validate that our proposed ART outperforms state-of-the-art methods on various benchmark datasets both quantitatively and visually. We also provide code and models at the website https://github.com/gladzhang/ART.
translated by 谷歌翻译
单个图像超分辨率(SISR)是一个不良问题,旨在获得从低分辨率(LR)输入的高分辨率(HR)输出,在此期间应该添加额外的高频信息以改善感知质量。现有的SISR工作主要通过最小化平均平方重建误差来在空间域中运行。尽管高峰峰值信噪比(PSNR)结果,但难以确定模型是否正确地添加所需的高频细节。提出了一些基于基于残余的结构,以指导模型暗示高频率特征。然而,由于空间域度量的解释是有限的,如何验证这些人为细节的保真度仍然是一个问题。在本文中,我们提出了频率域视角来的直观管道,解决了这个问题。由现有频域的工作启发,我们将图像转换为离散余弦变换(DCT)块,然后改革它们以获取DCT功能映射,它用作我们模型的输入和目标。设计了专门的管道,我们进一步提出了符合频域任务的性质的频率损失功能。我们的SISR方法在频域中可以明确地学习高频信息,为SR图像提供保真度和良好的感知质量。我们进一步观察到我们的模型可以与其他空间超分辨率模型合并,以提高原始SR输出的质量。
translated by 谷歌翻译
Recently, great progress has been made in single-image super-resolution (SISR) based on deep learning technology. However, the existing methods usually require a large computational cost. Meanwhile, the activation function will cause some features of the intermediate layer to be lost. Therefore, it is a challenge to make the model lightweight while reducing the impact of intermediate feature loss on the reconstruction quality. In this paper, we propose a Feature Interaction Weighted Hybrid Network (FIWHN) to alleviate the above problem. Specifically, FIWHN consists of a series of novel Wide-residual Distillation Interaction Blocks (WDIB) as the backbone, where every third WDIBs form a Feature shuffle Weighted Group (FSWG) by mutual information mixing and fusion. In addition, to mitigate the adverse effects of intermediate feature loss on the reconstruction results, we introduced a well-designed Wide Convolutional Residual Weighting (WCRW) and Wide Identical Residual Weighting (WIRW) units in WDIB, and effectively cross-fused features of different finenesses through a Wide-residual Distillation Connection (WRDC) framework and a Self-Calibrating Fusion (SCF) unit. Finally, to complement the global features lacking in the CNN model, we introduced the Transformer into our model and explored a new way of combining the CNN and Transformer. Extensive quantitative and qualitative experiments on low-level and high-level tasks show that our proposed FIWHN can achieve a good balance between performance and efficiency, and is more conducive to downstream tasks to solve problems in low-pixel scenarios.
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译
Image super-resolution (SR) serves as a fundamental tool for the processing and transmission of multimedia data. Recently, Transformer-based models have achieved competitive performances in image SR. They divide images into fixed-size patches and apply self-attention on these patches to model long-range dependencies among pixels. However, this architecture design is originated for high-level vision tasks, which lacks design guideline from SR knowledge. In this paper, we aim to design a new attention block whose insights are from the interpretation of Local Attribution Map (LAM) for SR networks. Specifically, LAM presents a hierarchical importance map where the most important pixels are located in a fine area of a patch and some less important pixels are spread in a coarse area of the whole image. To access pixels in the coarse area, instead of using a very large patch size, we propose a lightweight Global Pixel Access (GPA) module that applies cross-attention with the most similar patch in an image. In the fine area, we use an Intra-Patch Self-Attention (IPSA) module to model long-range pixel dependencies in a local patch, and then a $3\times3$ convolution is applied to process the finest details. In addition, a Cascaded Patch Division (CPD) strategy is proposed to enhance perceptual quality of recovered images. Extensive experiments suggest that our method outperforms state-of-the-art lightweight SR methods by a large margin. Code is available at https://github.com/passerer/HPINet.
translated by 谷歌翻译
现实世界图像Denoising是一个实用的图像恢复问题,旨在从野外嘈杂的输入中获取干净的图像。最近,Vision Transformer(VIT)表现出强大的捕获远程依赖性的能力,许多研究人员试图将VIT应用于图像DeNosing任务。但是,现实世界的图像是一个孤立的框架,它使VIT构建了内部贴片的远程依赖性,该依赖性将图像分为贴片并混乱噪声模式和梯度连续性。在本文中,我们建议通过使用连续的小波滑动转换器来解决此问题,该小波滑动转换器在现实世界中构建频率对应关系,称为dnswin。具体而言,我们首先使用CNN编码器从嘈杂的输入图像中提取底部功能。 DNSWIN的关键是将高频和低频信息与功能和构建频率依赖性分开。为此,我们提出了小波滑动窗口变压器,该变压器利用离散的小波变换,自我注意力和逆离散小波变换来提取深度特征。最后,我们使用CNN解码器将深度特征重建为DeNo的图像。对现实世界的基准测试的定量和定性评估都表明,拟议的DNSWIN对最新方法的表现良好。
translated by 谷歌翻译
由于成像装置的约束和操作时间的高成本,电脑断层扫描(CT)扫描通常以低帧内分辨率获取。改善切片内分辨率对人类专家和计算机辅助系统的疾病诊断有益。为此,本文建立了一种新型医疗切片合成,以增加切片分辨率。考虑到临床实践中始终缺乏地面真理中间医学切片,我们介绍了以自我监督的学习方式实现这项任务的增量跨视图相互蒸馏策略。具体而言,我们从三种不同的视图模型在这种情况下,从不同视图中学到的模型可以蒸馏有价值的知识来引导彼此的学习过程。我们可以重复此过程以使模型通过增加切片分辨率来综合中间切片数据。为了证明所提出的方法的有效性,我们对大型CT数据集进行了全面的实验。定量和定性比较结果表明,我们的方法通过清晰的边缘来占据最先进的算法。
translated by 谷歌翻译
显着对象检测是预测给定场景中人类参加区域的任务。融合深度信息已被证明在此任务中有效。该问题的主要挑战是如何从RGB模式和深度模式中汇总互补信息。但是,传统的深层模型在很大程度上依赖CNN特征提取器,并且通常会忽略远距离的依赖性。在这项工作中,我们提出了基于双Swin-Transformer的相互交互式网络。我们采用Swin-Transformer作为RGB和深度模态的特征提取器,以模拟视觉输入中的远程依赖性。在将两个特征分支融合到一个分支之前,将应用基于注意力的模块来增强每​​种模式的特征。我们设计了一个基于自我注意力的跨模式交互模块和一个封闭式的模态注意模块,以利用两种方式之间的互补信息。对于显着解码,我们创建了通过密集的连接增强的不同阶段,并保持解码的内存,而多级编码功能则被同时考虑。考虑到不准确的深度图问题,我们将早期阶段的RGB特征收集到跳过卷积模块中,以提供从RGB模式到最终显着性预测的更多指导。此外,我们添加了边缘监督以使功能学习过程正常。对四个评估指标的五个标准RGB-D SOD基准数据集进行了全面的实验,证明了所提出的DTMINET方法的优势。
translated by 谷歌翻译
随着深度学习(DL)的出现,超分辨率(SR)也已成为一个蓬勃发展的研究领域。然而,尽管结果有希望,但该领域仍然面临需要进一步研究的挑战,例如,允许灵活地采样,更有效的损失功能和更好的评估指标。我们根据最近的进步来回顾SR的域,并检查最新模型,例如扩散(DDPM)和基于变压器的SR模型。我们对SR中使用的当代策略进行了批判性讨论,并确定了有前途但未开发的研究方向。我们通过纳入该领域的最新发展,例如不确定性驱动的损失,小波网络,神经体系结构搜索,新颖的归一化方法和最新评估技术来补充先前的调查。我们还为整章中的模型和方法提供了几种可视化,以促进对该领域趋势的全球理解。最终,这篇综述旨在帮助研究人员推动DL应用于SR的界限。
translated by 谷歌翻译
压缩在通过限制系统(例如流媒体服务,虚拟现实或视频游戏)等系统的有效传输和存储图像和视频中起着重要作用。但是,不可避免地会导致伪影和原始信息的丢失,这可能会严重降低视觉质量。由于这些原因,压缩图像的质量增强已成为流行的研究主题。尽管大多数最先进的图像恢复方法基于卷积神经网络,但基于Swinir等其他基于变压器的方法在这些任务上表现出令人印象深刻的性能。在本文中,我们探索了新型的Swin Transformer V2,以改善图像超分辨率的Swinir,尤其是压缩输入方案。使用这种方法,我们可以解决训练变压器视觉模型中的主要问题,例如训练不稳定性,预训练和微调之间的分辨率差距以及数据饥饿。我们对三个代表性任务进行实验:JPEG压缩伪像去除,图像超分辨率(经典和轻巧)以及压缩的图像超分辨率。实验结果表明,我们的方法SWIN2SR可以改善SWINIR的训练收敛性和性能,并且是“ AIM 2022挑战压缩图像和视频的超分辨率”的前5个解决方案。
translated by 谷歌翻译