压缩传感(CS)一直在加速磁共振成像(MRI)采集过程中的关键作用。随着人工智能的复苏,深神经网络和CS算法正在集成以重新定义快速MRI的领域。过去几年目睹了基于深度学习的CS技术的复杂性,多样性和表现的大量增长,这些技术致力于快速MRI。在该荟萃分析中,我们系统地审查了快速MRI的深度学习的CS技术,描述了关键模型设计,突出突破,并讨论了有希望的方向。我们还介绍了一个综合分析框架和分类系统,以评估深度学习在基于CS的加速度的MRI的关键作用。
translated by 谷歌翻译
目的:并行成像通过用一系列接收器线圈获取其他灵敏度信息,从而加速了磁共振成像(MRI)数据,从而降低了相位编码步骤。压缩传感磁共振成像(CS-MRI)在医学成像领域中获得了普及,因为其数据要求较少,而不是平行成像。并行成像和压缩传感(CS)均通过最大程度地减少K空间中捕获的数据量来加快传统MRI获取。由于采集时间与样品的数量成反比,因此从缩短的K空间样品中的图像的反向形成会导致收购更快,但具有混乱的伪像。本文提出了一种新型的生成对抗网络(GAN),即雷德格尔(Recgan-gr)受到多模式损失的监督,以消除重建的图像。方法:与现有的GAN网络相反,我们提出的方法引入了一种新型的发电机网络,即与双域损耗函数集成的弹药网络,包括加权幅度和相位损耗函数以及基于平行成像的损失,即Grappa一致性损失。提出了K空间校正块,以使GAN网络自动化生成不必要的数据,从而使重建过程的收敛性更快。结果:全面的结果表明,拟议的Recgan-GR在基于GAN的方法中的PSNR有4 dB的改善,并且在文献中可用的传统最先进的CNN方法中有2 dB的改进。结论和意义:拟议的工作有助于显着改善低保留数据的图像质量,从而更快地获取了5倍或10倍。
translated by 谷歌翻译
物理驱动的深度学习方法已成为计算磁共振成像(MRI)问题的强大工具,将重建性能推向新限制。本文概述了将物理信息纳入基于学习的MRI重建中的最新发展。我们考虑了用于计算MRI的线性和非线性正向模型的逆问题,并回顾了解决这些方法的经典方法。然后,我们专注于物理驱动的深度学习方法,涵盖了物理驱动的损失功能,插件方法,生成模型和展开的网络。我们重点介绍了特定于领域的挑战,例如神经网络的实现和复杂值的构建基块,以及具有线性和非线性正向模型的MRI转换应用。最后,我们讨论常见问题和开放挑战,并与物理驱动的学习与医学成像管道中的其他下游任务相结合时,与物理驱动的学习的重要性联系在一起。
translated by 谷歌翻译
人工智能(AI)和机器学习(ML)在改善医学成像工作流程(从图像获取和重建到疾病诊断和治疗)方面具有巨大潜力。特别是,近年来,用于医学图像重建的AI和ML算法(尤其是基于深度学习(DL)的方法)的使用,尤其是基于深度学习(DL)的方法已有显着增长。就重建质量和计算效率而言,DL技术已证明具有竞争力,并且通常比常规重建方法优越。基于DL的图像重建的使用还提供了有前途的机会,可以改变心脏图像的获取和重建方式。在本章中,我们将回顾用于心脏成像的基于DL的重建技术的最新进展,重点是心脏磁共振(CMR)图像重建。我们主要关注该应用程序的监督DL方法,包括图像后处理技术,模型驱动方法和基于K空间的方法。还讨论了DL对心脏图像重建的当前局限性,挑战和未来机会。
translated by 谷歌翻译
在临床医学中,磁共振成像(MRI)是诊断,分类,预后和治疗计划中最重要的工具之一。然而,MRI遭受了固有的慢数据采集过程,因为数据在k空间中顺序收集。近年来,大多数MRI重建方法在文献中侧重于整体图像重建而不是增强边缘信息。这项工作通过详细说明了对边缘信息的提高来阐述了这一趋势。具体地,我们通过结合多视图信息介绍一种用于快速多通道MRI重建的新型并行成像耦合双鉴别器生成的对抗网络(PIDD-GaN)。双判别设计旨在改善MRI重建中的边缘信息。一个鉴别器用于整体图像重建,而另一个鉴别器是负责增强边缘信息的负责。为发电机提出了一种具有本地和全局剩余学习的改进的U-Net。频率通道注意块(FCA块)嵌入在发电机中以结合注意力机制。引入内容损耗以培训发电机以获得更好的重建质量。我们对Calgary-Campinas公共大脑MR DataSet进行了全面的实验,并将我们的方法与最先进的MRI重建方法进行了比较。在MICCAI13数据集上进行了对剩余学习的消融研究,以验证所提出的模块。结果表明,我们的PIDD-GaN提供高质量的重建MR图像,具有良好的边缘信息。单图像重建的时间低于5ms,符合加快处理的需求。
translated by 谷歌翻译
基于深度学习的脑磁共振成像(MRI)重建方法有可能加速MRI采集过程。尽管如此,科学界缺乏适当的基准,以评估高分辨率大脑图像的MRI重建质量,并评估这些所提出的算法在存在小而且预期的数据分布班次存在下的表现。多线圈磁共振图像(MC-MRI)重建挑战提供了一种基准,其目的在于使用高分辨率,三维,T1加权MRI扫描的大型数据集。挑战有两个主要目标:1)比较该数据集和2)上的不同的MRI重建模型,并评估这些模型的概括性,以通过不同数量的接收器线圈获取的数据。在本文中,我们描述了挑战实验设计,并总结了一系列基线和艺术脑MRI重建模型的结果。我们提供有关目前MRI重建最先进的相关比较信息,并突出挑战在更广泛的临床采用之前获得所需的普遍模型。 MC-MRI基准数据,评估代码和当前挑战排行榜可公开可用。它们为脑MRI重建领域的未来发展提供了客观性能评估。
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
可解释性和鲁棒性必须在临床应用中整合加速磁共振成像(MRI)重建的机器学习方法。这样做会允许快速高质量的解剖和病理学成像。数据一致性(DC)对于多模态数据的泛化至关重要,以及检测病理学的鲁棒性。这项工作提出了独立复发推理机(CIRIM)的级联,通过展开优化来评估DC,通过梯度下降,并通过设计的术语明确地明确。我们对CIRIM与其他展开的优化方法进行广泛的比较,是端到端变分网络(E2EVN)和轮辋,以及UNET和压缩感测(CS)。评估是分两个阶段完成的。首先,评估关于多次训练的MRI模型的学习,即用{t_1} $ - 加权和平凡对比,以及$ {t_2} $ - 加权膝盖数据。其次,在通过3D Flair MRI数据中重建依赖多发性硬化(MS)患者的3D Flair MRI数据来测试鲁棒性。结果表明,CIRIM在隐式强制执行DC时表现最佳,而E2EVN需要明确制定的DC。 CIRIM在重建临床MS数据时显示出最高病变对比度分辨率。与CS相比,性能提高了大约11%,而重建时间是二十次减少。
translated by 谷歌翻译
Deep neural networks provide unprecedented performance gains in many real world problems in signal and image processing. Despite these gains, future development and practical deployment of deep networks is hindered by their blackbox nature, i.e., lack of interpretability, and by the need for very large training sets. An emerging technique called algorithm unrolling or unfolding offers promise in eliminating these issues by providing a concrete and systematic connection between iterative algorithms that are used widely in signal processing and deep neural networks. Unrolling methods were first proposed to develop fast neural network approximations for sparse coding. More recently, this direction has attracted enormous attention and is rapidly growing both in theoretic investigations and practical applications. The growing popularity of unrolled deep networks is due in part to their potential in developing efficient, high-performance and yet interpretable network architectures from reasonable size training sets. In this article, we review algorithm unrolling for signal and image processing. We extensively cover popular techniques for algorithm unrolling in various domains of signal and image processing including imaging, vision and recognition, and speech processing. By reviewing previous works, we reveal the connections between iterative algorithms and neural networks and present recent theoretical results. Finally, we provide a discussion on current limitations of unrolling and suggest possible future research directions.
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
深度学习网络在快速磁共振成像(MRI)重建中显示出令人鼓舞的结果。在我们的工作中,我们开发了深层网络,以进一步提高重建的定量和感知质量。首先,我们提出了Reconsynergynet(RSN),该网络结合了在图像和傅立叶域上独立运行的互补益处。对于单线采集,我们引入了深层级联RSN(DC-RSN),这是一个与数据保真度(DF)单位交织在一起的RSN块的级联。其次,我们通过协助T1加权成像(T1WI)的帮助,这是T2加权成像(T2WI)的DC-RSN的结构恢复,这是一个短时间采集时间的序列。通过日志功能(高尔夫)融合的梯度为DC-RSN提供T1援助。此外,我们建议感知改进网络(PRN)来完善重建以获得更好的视觉信息保真度(VIF),这是一种与放射科医生对图像质量高度相关的指标。最后,对于多线圈采集,我们提出了可变拆分RSN(VS-RSN),深层块,每个块,包含RSN,多圈DF单元和加权平均模块。我们广泛验证了单线和多线圈采集的模型DC-RSN和VS-RSN,并报告最先进的性能。我们在FastMRI中获得了0.768、0.923、0.878的SSIM,单线圈-4X,多螺旋-4X和多型圈-8X的SSIM为0.878。我们还进行了实验,以证明基于高尔夫的T1援助和PRN的功效。
translated by 谷歌翻译
磁共振成像(MRI)是一种重要的非侵入性临床工具,可以产生高分辨率和可重复的图像。然而,高质量的MR图像需要长时间的扫描时间,这导致患者的疲惫和不适,由于患者的自愿运动和非自愿的生理运动,诱导更多人工制品。为了加速扫描过程,通过K空间欠采样和基于深度学习的重建的方法已经推广。这项工作引进了SwinMR,这是一种基于新型的Swin变压器的快速MRI重建方法。整个网络由输入模块(IM)组成,特征提取模块(FEM)和输出模块(OM)。 IM和OM是2D卷积层,并且FEM由级联的残留的Swin变压器块(RSTBS)和2D卷积层组成。 RSTB由一系列SWIN变压器层(STL)组成。 STL的Shifted Windows多头自我关注(W-MSA / SW-MSA)在移位的窗口中执行,而不是整个图像空间中原始变压器的多头自我关注(MSA)。通过使用灵敏度图提出了一种新的多通道损耗,这被证明是为了保留更多纹理和细节。我们在Calgary-Campinas公共大脑MR DataSet中进行了一系列比较研究和消融研究,并在多模态脑肿瘤细分挑战2017年数据集中进行了下游分段实验。结果表明,与其他基准方法相比,我们的SwinMR实现了高质量的重建,并且它在噪音中断和不同的数据集中显示了不同的遮光罩掩模的稳健性。该代码在https://github.com/ayanglab/swinmr公开使用。
translated by 谷歌翻译
CSGM框架(Bora-Jalal-Price-Dimakis'17)表明,深度生成前沿可能是解决逆问题的强大工具。但是,迄今为止,此框架仅在某些数据集(例如,人称和MNIST数字)上经验成功,并且已知在分布外样品上表现不佳。本文介绍了CSGM框架在临床MRI数据上的第一次成功应用。我们在FastMri DataSet上培训了大脑扫描之前的生成,并显示通过Langevin Dynamics的后验采样实现了高质量的重建。此外,我们的实验和理论表明,后部采样是对地面定语分布和测量过程的变化的强大。我们的代码和型号可用于:\ URL {https://github.com/utcsilab/csgm-mri-langevin}。
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
磁共振成像可以产生人体解剖和生理学的详细图像,可以帮助医生诊断和治疗肿瘤等病理。然而,MRI遭受了非常长的收购时间,使其易于患者运动伪影并限制其潜力以提供动态治疗。诸如并行成像和压缩感测的常规方法允许通过使用多个接收器线圈获取更少的MRI数据来改变MR图像来增加MRI采集速度。深度学习的最新进步与平行成像和压缩传感技术相结合,具有从高度加速的MRI数据产生高保真重建。在这项工作中,我们通过利用卷积复发网络的特性和展开算法来解决复发变分网络(RevurrentVarnet)的加速改变网络(RevurrentVarnet)的任务,提出了一种基于深入的深度学习的反问题解决者。 RevurrentVarnet由多个块组成,每个块都负责梯度下降优化算法的一个展开迭代,以解决逆问题。与传统方法相反,优化步骤在观察域($ k $ -space)而不是图像域中进行。每次反复出的Varnet块都会通过观察到的$ k $ -space,并由数据一致性术语和复制单元组成,它将作为输入的隐藏状态和前一个块的预测。我们所提出的方法实现了新的最新状态,定性和定量重建导致来自公共多通道脑数据集的5倍和10倍加速数据,优于以前的传统和基于深度学习的方法。我们将在公共存储库上释放所有型号代码和基线。
translated by 谷歌翻译
由于组织和骨骼之间的相似性,在人解剖结构中广泛看到了全球相关性。由于近距离质子密度和T1/T2参数,这些相关性反映在磁共振成像(MRI)扫描中。此外,为了实现加速的MRI,k空间数据的采样不足,从而导致全球混叠伪像。卷积神经网络(CNN)模型被广泛用于加速MRI重建,但是由于卷积操作的固有位置,这些模型在捕获全球相关性方面受到限制。基于自发的变压器模型能够捕获图像特征之间的全局相关性,但是,变压器模型对MRI重建的当前贡献是微小的。现有的贡献主要提供CNN转换器混合解决方案,并且很少利用MRI的物理学。在本文中,我们提出了一种基于物理的独立(无卷积)变压器模型,标题为“多头级联SWIN变压器(MCSTRA),用于加速MRI重建。 MCSTRA将几种相互关联的MRI物理相关概念与变压器网络相结合:它通过移动的窗口自我发场机制利用了全局MR特征;它使用多头设置分别提取属于不同光谱组件的MR特征;它通过级联的网络在中间脱氧和K空间校正之间进行迭代,该网络具有K空间和中间损耗计算中的数据一致性;此外,我们提出了一种新型的位置嵌入生成机制,以使用对应于底面采样掩码的点扩散函数来指导自我发作。我们的模型在视觉上和定量上都大大优于最先进的MRI重建方法,同时描述了改善的分辨率和去除词法。
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
基于分数的扩散模型为使用数据分布的梯度建模图像提供了一种强大的方法。利用学到的分数函数为先验,在这里,我们引入了一种从条件分布中进行测量的方法,以便可以轻松地用于求解成像中的反问题,尤其是用于加速MRI。简而言之,我们通过denoising得分匹配来训练连续的时间依赖分数函数。然后,在推论阶段,我们在数值SDE求解器和数据一致性投影步骤之间进行迭代以实现重建。我们的模型仅需要用于训练的幅度图像,但能够重建复杂值数据,甚至扩展到并行成像。所提出的方法是不可知论到子采样模式,可以与任何采样方案一起使用。同样,由于其生成性质,我们的方法可以量化不确定性,这是标准回归设置不可能的。最重要的是,我们的方法还具有非常强大的性能,甚至击败了经过全面监督训练的模型。通过广泛的实验,我们在质量和实用性方面验证了我们方法的优势。
translated by 谷歌翻译
最近,由于高性能,深度学习方法已成为生物学图像重建和增强问题的主要研究前沿,以及其超快速推理时间。但是,由于获得监督学习的匹配参考数据的难度,对不需要配对的参考数据的无监督学习方法越来越兴趣。特别是,已成功用于各种生物成像应用的自我监督的学习和生成模型。在本文中,我们概述了在古典逆问题的背景下的连贯性观点,并讨论其对生物成像的应用,包括电子,荧光和去卷积显微镜,光学衍射断层扫描和功能性神经影像。
translated by 谷歌翻译