降解扩散概率模型(DDPM)已显示在MRI重建中具有出色的性能。从连续的随机微分方程(SDE)的角度来看,DDPM的反向过程可被视为最大化重建的MR图像的能量,从而导致SDE序列发散。因此,提出了用于MRI重建的修改高频DDPM模型。从其连续的SDE观点(称为高频空间SDE)(HFS-SDE),MR图像的能量浓缩低频部分不再得到放大,并且扩散过程更多地集中在获取高频的先验信息上。它不仅提高了扩散模型的稳定性,而且还提供了更好地恢复高频细节的可能性。公开FastMRI数据集的实验表明,我们提出的HFS-SDE优于DDPM驱动的VP-SDE,有监督的深度学习方法和传统的平行成像方法,就稳定性和重建精度而言。
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
基于分数的扩散模型为使用数据分布的梯度建模图像提供了一种强大的方法。利用学到的分数函数为先验,在这里,我们引入了一种从条件分布中进行测量的方法,以便可以轻松地用于求解成像中的反问题,尤其是用于加速MRI。简而言之,我们通过denoising得分匹配来训练连续的时间依赖分数函数。然后,在推论阶段,我们在数值SDE求解器和数据一致性投影步骤之间进行迭代以实现重建。我们的模型仅需要用于训练的幅度图像,但能够重建复杂值数据,甚至扩展到并行成像。所提出的方法是不可知论到子采样模式,可以与任何采样方案一起使用。同样,由于其生成性质,我们的方法可以量化不确定性,这是标准回归设置不可能的。最重要的是,我们的方法还具有非常强大的性能,甚至击败了经过全面监督训练的模型。通过广泛的实验,我们在质量和实用性方面验证了我们方法的优势。
translated by 谷歌翻译
最近,基于得分的扩散模型在MRI重建中表现出令人满意的性能。这些方法中的大多数都需要大量完全采样的MRI数据作为培训集,有时在实践中很难获得。本文提出了用于MRI重建的完全采样的基于无DATA的分数扩散模型,该模型以不足的采样数据以自我监督的方式学习了完全采样的MR图像。具体而言,我们首先通过贝叶斯深度学习从未采样的数据中推断出完全采样的MR图像分布,然后通过训练分数函数来扰动数据分布并近似其概率密度梯度。利用学到的分数函数为先验,我们可以通过执行条件的Langevin Markov链蒙特卡洛(MCMC)采样来重建MR图像。公共数据集的实验表明,所提出的方法优于现有的自我监督的MRI重建方法,并与常规(完全采样的数据训练)基于得分的扩散方法实现可比性的性能。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
Although recent deep learning methods, especially generative models, have shown good performance in fast magnetic resonance imaging, there is still much room for improvement in high-dimensional generation. Considering that internal dimensions in score-based generative models have a critical impact on estimating the gradient of the data distribution, we present a new idea, low-rank tensor assisted k-space generative model (LR-KGM), for parallel imaging reconstruction. This means that we transform original prior information into high-dimensional prior information for learning. More specifically, the multi-channel data is constructed into a large Hankel matrix and the matrix is subsequently folded into tensor for prior learning. In the testing phase, the low-rank rotation strategy is utilized to impose low-rank constraints on tensor output of the generative network. Furthermore, we alternately use traditional generative iterations and low-rank high-dimensional tensor iterations for reconstruction. Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance.
translated by 谷歌翻译
磁共振成像是临床诊断的重要工具。但是,它遭受了漫长的收购时间。深度学习的利用,尤其是深层生成模型,在磁共振成像中提供了积极的加速和更好的重建。然而,学习数据分布作为先验知识并从有限数据中重建图像仍然具有挑战性。在这项工作中,我们提出了一种新颖的Hankel-K空间生成模型(HKGM),该模型可以从一个k-空间数据的训练集中生成样品。在先前的学习阶段,我们首先从k空间数据构建一个大的Hankel矩阵,然后从大型Hankel矩阵中提取多个结构化的K空间贴片,以捕获不同斑块之间的内部分布。从Hankel矩阵中提取斑块使生成模型可以从冗余和低级别的数据空间中学习。在迭代重建阶段,可以观察到所需的解决方案遵守学识渊博的先验知识。通过将其作为生成模型的输入来更新中间重建解决方案。然后,通过对测量数据对其Hankel矩阵和数据一致性组合施加低排名的惩罚来替代地进行操作。实验结果证实,单个K空间数据中斑块的内部统计数据具有足够的信息来学习强大的生成模型并提供最新的重建。
translated by 谷歌翻译
我们引入了一个框架,该框架可以从学习概率分布中进行有效的MRI重建。与传统的基于深度学习的MRI重建技术不同,鉴于使用Markov链蒙特卡洛(MCMC)方法测得的K空间,样品是从后部分布中得出的。除了可以通过常规方法获得的图像的最大后验(MAP)估计值外,还可以计算最小平方误差(MMSE)估计值和不确定性图。数据驱动的马尔可夫链是根据从给定的图像数据库中学到的生成模型构建的,并且独立于用于建模K空间测量的前向操作员。这提供了灵活性,因为该方法可以应用于使用不同的采样方案获得的K空间或使用相同的预训练模型接收线圈。此外,我们使用基于反向扩散过程的框架来利用高级生成模型。该方法的性能使用K空间中的10倍下采样在开放数据集上进行评估。
translated by 谷歌翻译
由低级别正则化驱动的深度学习方法在动态磁共振(MR)成像中实现了有吸引力的性能。但是,这些方法中的大多数代表了手工制作的核标准的低级别先验,该规范无法通过固定的正则化参数准确地近似整个数据集的低排名先验。在本文中,我们提出了一种学习动态MR成像的低级方法。特别是,我们将部分可分离(PS)模型的半季度分裂方法(HQS)算法传输到网络中,其中低级别以可学习的空空间变换自适应地表征。心脏CINE数据集的实验表明,所提出的模型的表现优于最新的压缩传感(CS)方法和现有的深度学习方法,既有定量和质量上的深度学习方法。
translated by 谷歌翻译
Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications. However, lowering the radiation dose will significantly degrade the image quality. With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms. Therefore, we propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction. To extract sufficient prior information from single sample, the Hankel matrix formulation is employed. Besides, the penalized weighted least-squares and total variation are introduced to achieve superior image quality. Specifically, we first train a score-based generative model on one sinogram by extracting a great number of tensors from the structural-Hankel matrix as the network input to capture prior distribution. Then, at the inference stage, the stochastic differential equation solver and data consistency step are performed iteratively to obtain the sinogram data. Finally, the final image is obtained through the filtered back-projection algorithm. The reconstructed results are approaching to the normal-dose counterparts. The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
translated by 谷歌翻译
深度MRI重建通常是使用有条件的模型进行的,该模型将其映射到完全采样的数据作为输出中。有条件的模型在加速成像运算符的知识下执行了脱氧,因此在操作员的域转移下,它们概括了很差。无条件模型是一种强大的替代方法,相反,它可以学习生成图像先验,以提高针对领域转移的可靠性。鉴于它们的高度代表性多样性和样本质量,最近的扩散模型特别有希望。然而,事先通过静态图像进行预测会导致次优性能。在这里,我们提出了一种基于适应性扩散的新型MRI重建Adadiff。为了启用有效的图像采样,引入了一个可以使用大扩散步骤的对抗映射器。使用受过训练的先验进行两阶段的重建:一个快速扩散阶段,产生初始重建阶段,以及一个适应阶段,其中更新扩散先验以最大程度地减少获得的K空间数据的重建损失。关于多对比的大脑MRI的演示清楚地表明,Adadiff在跨域任务中的竞争模型以及域内任务中的卓越或PAR性能方面取得了出色的性能。
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
translated by 谷歌翻译
由于其作为生成模型的强大表现,最近达到了社区内部的显着兴趣。此外,其对逆问题的应用已经证明了最先进的性能。不幸的是,扩散模型具有临界缺点 - 它们本质上是速度的速度,从而需要几千台迭代来产生来自纯高斯噪声的图像。在这项工作中,我们表明从高斯噪音开始是不必要的。相反,从具有更好初始化的单个向前扩散开始显着降低了反向条件扩散中的采样步骤的数量。这种现象是通过我们的条件扩散策略的随机差分方程的收缩理论正式解释 - 反向扩散的交替应用,然后是非膨胀性数据一致性步骤。新的采样策略被称为较近的漫射 - 更快(CCDF),还揭示了新的洞察,就如何对逆问题的方法如何协同组合扩散模型。具有超分辨率,图像染色和压缩传感MRI的实验结果表明,我们的方法可以在显着降低的采样步骤中实现最先进的重建性能。
translated by 谷歌翻译
最近关于其他方式的核化图像T1辅助MRI重建的研究表明,进一步加速MRI收购其他方式的潜力。大多数最先进的方法通过开发用于固定的欠采样模式的网络架构来实现改进,而不完全利用方式之间的互补信息。尽管可以简单地修改现有的下采样模式学习算法以允许完全采样的T1加权MR图像来辅助模式学习,但是可以实现重建任务的显着改进。为此,我们提出了一个迭代框架,优化了MRI获取的另一种方式的采样下采样模式,可以在不同的下抽样因子中补充完全采样的T1加权MR图像,同时共同优化T1辅助MRI重建模型。具体地,我们所提出的方法利用两种模式之间的潜在信息的差异来确定可以最大化T1加权MR图像的辅助功率在改善MRI重建时最大化的采样模式。与常用的下采样模式和最先进的方法相比,我们在公共数据集中展示了我们在公共数据集上的学习的下采样模式的卓越表现,可以联合优化重建网络和欠采样模式以8倍的取样因子。
translated by 谷歌翻译
Image reconstruction using deep learning algorithms offers improved reconstruction quality and lower reconstruction time than classical compressed sensing and model-based algorithms. Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often unavailable in several applications, restricting the applicability of the above methods. We introduce a novel metric termed the ENsemble Stein's Unbiased Risk Estimate (ENSURE) framework, which can be used to train deep image reconstruction algorithms without fully sampled and noise-free images. The proposed framework is the generalization of the classical SURE and GSURE formulation to the setting where the images are sampled by different measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this loss is an unbiased estimate for the true mean-square error, which offers a better alternative to GSURE, which only offers an unbiased estimate for the projected error. Our experiments show that the networks trained with this loss function can offer reconstructions comparable to the supervised setting. While we demonstrate this framework in the context of MR image recovery, the ENSURE framework is generally applicable to arbitrary inverse problems.
translated by 谷歌翻译
CSGM框架(Bora-Jalal-Price-Dimakis'17)表明,深度生成前沿可能是解决逆问题的强大工具。但是,迄今为止,此框架仅在某些数据集(例如,人称和MNIST数字)上经验成功,并且已知在分布外样品上表现不佳。本文介绍了CSGM框架在临床MRI数据上的第一次成功应用。我们在FastMri DataSet上培训了大脑扫描之前的生成,并显示通过Langevin Dynamics的后验采样实现了高质量的重建。此外,我们的实验和理论表明,后部采样是对地面定语分布和测量过程的变化的强大。我们的代码和型号可用于:\ URL {https://github.com/utcsilab/csgm-mri-langevin}。
translated by 谷歌翻译
最近,对深度学习进行了广泛的研究,以加速动态磁共振(MR)成像,并取得了令人鼓舞的进步。但是,如果没有完全采样的参考数据进行培训,当前方法可能在恢复细节或结构方面具有有限的能力。为了应对这一挑战,本文提出了一个自我监督的协作学习框架(SelfCollearn),以从无效的K-Space数据中进行准确的动态MR图像重建。拟议的框架配备了三个重要组成部分,即双网络协作学习,重新启动数据增强和专门设计的共同培训损失。该框架可以灵活地与数据驱动的网络和基于模型的迭代未滚动网络集成。我们的方法已在体内数据集上进行了评估,并将其与四种最新方法进行了比较。结果表明,我们的方法具有很强的能力,可以从无效的K空间数据捕获直接重建的基本和固有表示形式,因此可以实现高质量且快速的动态MR成像。
translated by 谷歌翻译
深度学习在加速磁共振成像(MRI)中表现出惊人的性能。最先进的深度学习重建采用强大的卷积神经网络,并且由于许多磁共振图像或其对应的k空间是2D的许多磁共振图像或其对应的k空间。在这项工作中,我们展示了一种探讨了1D卷积的新方法,使得深度网络更容易受到培训和广义。我们进一步将1D卷积集成到所提出的深网络中,命名为一维深度低级和稀疏网络(ODL),它展开了低级和稀疏重建模型的迭代过程。在体内膝盖和脑数据集中的广泛结果表明,所提出的ODLS非常适合培训受试者的情况,并提供比视觉和定量的最先进的方法改进的重建性能。此外,ODL还向不同的欠采样场景显示出良好的稳健性以及培训和测试数据之间的一些不匹配。总之,我们的工作表明,在快速MRI中,1D深度学习方案是内存高效且强大的。
translated by 谷歌翻译
从部分测量重建医学图像是计算机断层扫描(CT)和磁共振成像(MRI)中的重要逆问题。基于机器学习的现有解决方案通常训练模型,直接将测量线映射到医学图像,利用配对图像和测量的训练数据集。这些测量通常使用测量过程的固定物理模型从图像中合成,其阻碍了模型的泛化能力到未知的测量过程。为解决这个问题,我们提出了一种完全无监督的技术来解决逆问题,利用最近引入的基于分数的生成模型。具体而言,我们首先在医学图像上培训基于分数的生成模型,以捕获他们的先前分配。在测试时间上给定测量和测量过程的物理模型,我们介绍了一种采样方法来重建与先前和观察测量一致的图像。我们的方法在训练期间不假设固定的测量过程,因此可以灵活地适应于测试时间的不同测量过程。经验上,我们观察到CT和MRI中的几种医学成像任务中的可比性或更好的性能,同时对未知测量过程的概率显着展示了更好的概括。
translated by 谷歌翻译