Low-dose computed tomography (CT) plays a significant role in reducing the radiation risk in clinical applications. However, lowering the radiation dose will significantly degrade the image quality. With the rapid development and wide application of deep learning, it has brought new directions for the development of low-dose CT imaging algorithms. Therefore, we propose a fully unsupervised one sample diffusion model (OSDM)in projection domain for low-dose CT reconstruction. To extract sufficient prior information from single sample, the Hankel matrix formulation is employed. Besides, the penalized weighted least-squares and total variation are introduced to achieve superior image quality. Specifically, we first train a score-based generative model on one sinogram by extracting a great number of tensors from the structural-Hankel matrix as the network input to capture prior distribution. Then, at the inference stage, the stochastic differential equation solver and data consistency step are performed iteratively to obtain the sinogram data. Finally, the final image is obtained through the filtered back-projection algorithm. The reconstructed results are approaching to the normal-dose counterparts. The results prove that OSDM is practical and effective model for reducing the artifacts and preserving the image quality.
translated by 谷歌翻译
Although recent deep learning methods, especially generative models, have shown good performance in fast magnetic resonance imaging, there is still much room for improvement in high-dimensional generation. Considering that internal dimensions in score-based generative models have a critical impact on estimating the gradient of the data distribution, we present a new idea, low-rank tensor assisted k-space generative model (LR-KGM), for parallel imaging reconstruction. This means that we transform original prior information into high-dimensional prior information for learning. More specifically, the multi-channel data is constructed into a large Hankel matrix and the matrix is subsequently folded into tensor for prior learning. In the testing phase, the low-rank rotation strategy is utilized to impose low-rank constraints on tensor output of the generative network. Furthermore, we alternately use traditional generative iterations and low-rank high-dimensional tensor iterations for reconstruction. Experimental comparisons with the state-of-the-arts demonstrated that the proposed LR-KGM method achieved better performance.
translated by 谷歌翻译
近年来,基于深度学习的平行成像(PI)取得了巨大进展,以加速磁共振成像(MRI)。然而,现有方法的性能和鲁棒性仍然可以是不受欢迎的。在这项工作中,我们建议通过柔性PI重建,创建的重量K-Space Genera-Tive模型(WKGM)来探索K空间域学习。具体而言,WKGM是一种通用的K空间域模型,在其中有效地纳入了K空间加权技术和高维空间增强设计,用于基于得分的Genererative模型训练,从而实现良好和强大的重建。此外,WKGM具有灵活性,因此可以与各种传统的K空间PI模型协同结合,从而产生基于学习的先验以产生高保真重建。在具有不同采样模式和交流电因子的数据集上进行实验性重新构建表明,WKGM可以通过先验良好的K-Space生成剂获得最新的重建结果。
translated by 谷歌翻译
磁共振成像是临床诊断的重要工具。但是,它遭受了漫长的收购时间。深度学习的利用,尤其是深层生成模型,在磁共振成像中提供了积极的加速和更好的重建。然而,学习数据分布作为先验知识并从有限数据中重建图像仍然具有挑战性。在这项工作中,我们提出了一种新颖的Hankel-K空间生成模型(HKGM),该模型可以从一个k-空间数据的训练集中生成样品。在先前的学习阶段,我们首先从k空间数据构建一个大的Hankel矩阵,然后从大型Hankel矩阵中提取多个结构化的K空间贴片,以捕获不同斑块之间的内部分布。从Hankel矩阵中提取斑块使生成模型可以从冗余和低级别的数据空间中学习。在迭代重建阶段,可以观察到所需的解决方案遵守学识渊博的先验知识。通过将其作为生成模型的输入来更新中间重建解决方案。然后,通过对测量数据对其Hankel矩阵和数据一致性组合施加低排名的惩罚来替代地进行操作。实验结果证实,单个K空间数据中斑块的内部统计数据具有足够的信息来学习强大的生成模型并提供最新的重建。
translated by 谷歌翻译
Dynamic magnetic resonance image reconstruction from incomplete k-space data has generated great research interest due to its capability to reduce scan time. Never-theless, the reconstruction problem is still challenging due to its ill-posed nature. Recently, diffusion models espe-cially score-based generative models have exhibited great potential in algorithm robustness and usage flexi-bility. Moreover, the unified framework through the variance exploding stochastic differential equation (VE-SDE) is proposed to enable new sampling methods and further extend the capabilities of score-based gener-ative models. Therefore, by taking advantage of the uni-fied framework, we proposed a k-space and image Du-al-Domain collaborative Universal Generative Model (DD-UGM) which combines the score-based prior with low-rank regularization penalty to reconstruct highly under-sampled measurements. More precisely, we extract prior components from both image and k-space domains via a universal generative model and adaptively handle these prior components for faster processing while maintaining good generation quality. Experimental comparisons demonstrated the noise reduction and detail preservation abilities of the proposed method. Much more than that, DD-UGM can reconstruct data of differ-ent frames by only training a single frame image, which reflects the flexibility of the proposed model.
translated by 谷歌翻译
在计算机断层扫描成像的实际应用中,投影数据可以在有限角度范围内获取,并由于扫描条件的限制而被噪声损坏。嘈杂的不完全投影数据导致反问题的不良性。在这项工作中,我们从理论上验证了低分辨率重建问题的数值稳定性比高分辨率问题更好。在接下来的内容中,提出了一个新型的低分辨率图像先验的CT重建模型,以利用低分辨率图像来提高重建质量。更具体地说,我们在下采样的投影数据上建立了低分辨率重建问题,并将重建的低分辨率图像作为原始限量角CT问题的先验知识。我们通过交替的方向方法与卷积神经网络近似的所有子问题解决了约束最小化问题。数值实验表明,我们的双分辨率网络在嘈杂的有限角度重建问题上的变异方法和流行的基于学习的重建方法都优于变异方法。
translated by 谷歌翻译
基于分数的扩散模型为使用数据分布的梯度建模图像提供了一种强大的方法。利用学到的分数函数为先验,在这里,我们引入了一种从条件分布中进行测量的方法,以便可以轻松地用于求解成像中的反问题,尤其是用于加速MRI。简而言之,我们通过denoising得分匹配来训练连续的时间依赖分数函数。然后,在推论阶段,我们在数值SDE求解器和数据一致性投影步骤之间进行迭代以实现重建。我们的模型仅需要用于训练的幅度图像,但能够重建复杂值数据,甚至扩展到并行成像。所提出的方法是不可知论到子采样模式,可以与任何采样方案一起使用。同样,由于其生成性质,我们的方法可以量化不确定性,这是标准回归设置不可能的。最重要的是,我们的方法还具有非常强大的性能,甚至击败了经过全面监督训练的模型。通过广泛的实验,我们在质量和实用性方面验证了我们方法的优势。
translated by 谷歌翻译
降解扩散概率模型(DDPM)已显示在MRI重建中具有出色的性能。从连续的随机微分方程(SDE)的角度来看,DDPM的反向过程可被视为最大化重建的MR图像的能量,从而导致SDE序列发散。因此,提出了用于MRI重建的修改高频DDPM模型。从其连续的SDE观点(称为高频空间SDE)(HFS-SDE),MR图像的能量浓缩低频部分不再得到放大,并且扩散过程更多地集中在获取高频的先验信息上。它不仅提高了扩散模型的稳定性,而且还提供了更好地恢复高频细节的可能性。公开FastMRI数据集的实验表明,我们提出的HFS-SDE优于DDPM驱动的VP-SDE,有监督的深度学习方法和传统的平行成像方法,就稳定性和重建精度而言。
translated by 谷歌翻译
基于深入的学习的断层摄影图像重建一直在这些年来引起了很多关注。稀疏视图数据重建是典型的未确定逆问题之一,如何从数十个投影重建高质量CT图像仍然是实践中的挑战。为了解决这一挑战,在本文中,我们提出了一个多域一体化的Swin变压器网络(MIST-NET)。首先,使用灵活的网络架构,所提出的雾网掺入了来自数据,残差数据,图像和剩余图像的豪华域特征。这里,残差数据和残差 - 图像域网组件可以被认为是数据一致性模块,以消除残差数据和图像域中的插值误差,然后进一步保持图像细节。其次,为了检测图像特征和进一步保护图像边缘,将培训的Sobel滤波器结合到网络中以提高编码解码能力。第三,随着经典的Swin变压器,我们进一步设计了高质量的重建变压器(即,REFFORMER)来提高重建性能。 REFFORMER继承了SWIN变压器的功率以捕获重建图像的全局和本地特征。具有48种视图的数值数据集的实验证明了我们所提出的雾网提供更高的重建图像质量,具有小的特征恢复和边缘保护,而不是其他竞争对手,包括高级展开网络。定量结果表明,我们的雾网也获得了最佳性能。训练有素的网络被转移到真实的心脏CT数据集,48次视图,重建结果进一步验证了我们的雾网的优势,进一步证明了临床应用中雾的良好稳健性。
translated by 谷歌翻译
计算机断层扫描(CT)使用从身体周围的传感器取出的X射线测量以产生人体的断层图像。如果X射线数据充分采样和高质量,则可以使用传统的重建算法;然而,诸如将剂量减少给患者的问题,或数据采集的几何限制可能导致低质量或不完整的数据。由于噪声和其他伪像,使用传统方法从这些数据重建的图像具有差的质量。本研究的目的是训练单个神经网络,从嘈杂或不完全CT扫描数据重建高质量CT图像,包括低剂量,稀疏视图和有限的角度场景。为了完成这项任务,我们将生成的对冲网络(GaN)作为信号训练,以与CT数据的迭代同步代数重建技术(SART)结合使用。网络包括自我关注块,以模拟数据中的远程依赖性。我们将我们的自我关注GaN进行CT图像重建,包括几种最先进的方法,包括去噪循环GaN,Circle GaN和总变化的校长算法。我们的方法被证明是可以相当的整体性能来圈出GaN,同时优于其他两种方法。
translated by 谷歌翻译
从部分测量重建医学图像是计算机断层扫描(CT)和磁共振成像(MRI)中的重要逆问题。基于机器学习的现有解决方案通常训练模型,直接将测量线映射到医学图像,利用配对图像和测量的训练数据集。这些测量通常使用测量过程的固定物理模型从图像中合成,其阻碍了模型的泛化能力到未知的测量过程。为解决这个问题,我们提出了一种完全无监督的技术来解决逆问题,利用最近引入的基于分数的生成模型。具体而言,我们首先在医学图像上培训基于分数的生成模型,以捕获他们的先前分配。在测试时间上给定测量和测量过程的物理模型,我们介绍了一种采样方法来重建与先前和观察测量一致的图像。我们的方法在训练期间不假设固定的测量过程,因此可以灵活地适应于测试时间的不同测量过程。经验上,我们观察到CT和MRI中的几种医学成像任务中的可比性或更好的性能,同时对未知测量过程的概率显着展示了更好的概括。
translated by 谷歌翻译
最近,从图像中提取的不同组件的低秩属性已经考虑在MAN Hypspectral图像去噪方法中。然而,这些方法通常将3D矩阵或1D向量展开,以利用现有信息,例如非识别空间自相似性(NSS)和全局光谱相关(GSC),其破坏了高光谱图像的内在结构相关性(HSI) )因此导致恢复质量差。此外,由于在HSI的原始高维空间中的矩阵和张量的矩阵和张量的参与,其中大多数受到重大计算负担问题。我们使用子空间表示和加权低级张量正则化(SWLRTR)进入模型中以消除高光谱图像中的混合噪声。具体地,为了在光谱频带中使用GSC,将噪声HSI投影到简化计算的低维子空间中。之后,引入加权的低级张量正则化术语以表征缩减图像子空间中的前导。此外,我们设计了一种基于交替最小化的算法来解决非耦合问题。模拟和实时数据集的实验表明,SWLRTR方法比定量和视觉上的其他高光谱去噪方法更好。
translated by 谷歌翻译
减少磁共振(MR)图像采集时间可能会使MR检查更容易获得。包括深度学习模型在内的先前艺术已致力于解决长期MRI成像时间的问题。最近,深层生成模型在算法鲁棒性和使用灵活性方面具有巨大的潜力。然而,无法直接学习或使用任何现有方案。此外,还值得研究的是,深层生成模型如何在混合域上很好地工作。在这项工作中,通过利用基于深度能量的模型,我们提出了一个K空间和图像域协作生成模型,以全面估算从采样量未采样的测量中的MR数据。与最先进的实验比较表明,所提出的混合方法的重建精度较小,在不同的加速因子下更稳定。
translated by 谷歌翻译
光子计数CT(PCCT)通过更好的空间和能量分辨率提供了改进的诊断性能,但是开发可以处理这些大数据集的高质量图像重建方法是具有挑战性的。基于模型的解决方案结合了物理采集的模型,以重建更准确的图像,但取决于准确的前向操作员,并在寻找良好的正则化方面遇到困难。另一种方法是深度学习的重建,这在CT中表现出了巨大的希望。但是,完全数据驱动的解决方案通常需要大量的培训数据,并且缺乏解释性。为了结合两种方法的好处,同时最大程度地降低了各自的缺点,希望开发重建算法,以结合基于模型和数据驱动的方法。在这项工作中,我们基于展开/展开的迭代网络提出了一种新颖的深度学习解决方案,用于PCCT中的材料分解。我们评估了两种情况:一种学识渊博的后处理,隐含地利用了模型知识,以及一种学到的梯度,该梯度在体系结构中具有明确的基于模型的组件。借助我们提出的技术,我们解决了一个具有挑战性的PCCT模拟情况:低剂量,碘对比度和很小的训练样品支持的腹部成像中的三材料分解。在这种情况下,我们的方法的表现优于最大似然估计,一种变异方法以及一个完整的网络。
translated by 谷歌翻译
深度MRI重建通常是使用有条件的模型进行的,该模型将其映射到完全采样的数据作为输出中。有条件的模型在加速成像运算符的知识下执行了脱氧,因此在操作员的域转移下,它们概括了很差。无条件模型是一种强大的替代方法,相反,它可以学习生成图像先验,以提高针对领域转移的可靠性。鉴于它们的高度代表性多样性和样本质量,最近的扩散模型特别有希望。然而,事先通过静态图像进行预测会导致次优性能。在这里,我们提出了一种基于适应性扩散的新型MRI重建Adadiff。为了启用有效的图像采样,引入了一个可以使用大扩散步骤的对抗映射器。使用受过训练的先验进行两阶段的重建:一个快速扩散阶段,产生初始重建阶段,以及一个适应阶段,其中更新扩散先验以最大程度地减少获得的K空间数据的重建损失。关于多对比的大脑MRI的演示清楚地表明,Adadiff在跨域任务中的竞争模型以及域内任务中的卓越或PAR性能方面取得了出色的性能。
translated by 谷歌翻译
基于深度学习的解决方案正在为各种应用程序成功实施。最值得注意的是,临床用例已增加了兴趣,并且是过去几年提出的一些尖端数据驱动算法背后的主要驱动力。对于诸如稀疏视图重建等应用,其中测量数据的量很少,以使获取时间短而且辐射剂量较低,降低了串联的伪像,促使数据驱动的DeNoINEDENO算法的开发,其主要目标是获得获得的主要目标。只有一个全扫描数据的子集诊断可行的图像。我们提出了WNET,这是一个数据驱动的双域denoising模型,其中包含用于稀疏视图deNoising的可训练的重建层。两个编码器 - 模型网络同时在正式和重建域中执行deno,而实现过滤后的反向投影算法的第三层则夹在前两种之间,并照顾重建操作。我们研究了该网络在稀疏视图胸部CT扫描上的性能,并突出显示了比更传统的固定层具有可训练的重建层的额外好处。我们在两个临床相关的数据集上训练和测试我们的网络,并将获得的结果与三种不同类型的稀疏视图CT CT DeNoisis和重建算法进行了比较。
translated by 谷歌翻译
编码的光圈快照光谱成像(CASSI)是一种用于从一个或几个二维投影测量值重建三维高光谱图像(HSI)的技术。但是,较少的投影测量或更多的光谱通道导致了严重的问题,在这种情况下,必须应用正则化方法。为了显着提高重建的准确性,本文提出了一种基于自然图像的稀疏性和深层图像先验(FAMA-SDIP)的快速交流最小化算法。通过将深层图像(DIP)集成到压缩感应(CS)重建原理中,提出的算法可以在没有任何培训数据集的情况下实现最新结果。广泛的实验表明,FAMA-SDIP方法显着优于模拟和实际HSI数据集的主要主要方法。
translated by 谷歌翻译
基于深度学习的图像重建方法在许多成像方式中表现出令人印象深刻的经验表现。这些方法通常需要大量的高质量配对训练数据,这在医学成像中通常不可用。为了解决这个问题,我们为贝叶斯框架内的学习重建提供了一种新颖的无监督知识转移范式。提出的方法分为两个阶段学习重建网络。第一阶段训练一个重建网络,其中包括一组有序对,包括椭圆的地面真相图像和相应的模拟测量数据。第二阶段微调在没有监督的情况下将经过验证的网络用于更现实的测量数据。通过构造,该框架能够通过重建图像传递预测性不确定性信息。我们在低剂量和稀疏视图计算机断层扫描上提出了广泛的实验结果,表明该方法与几种最先进的监督和无监督的重建技术具有竞争力。此外,对于与培训数据不同的测试数据,与仅在合成数据集中训练的学习方法相比,所提出的框架不仅在视觉上可以显着提高重建质量,而且在PSNR和SSIM方面也可以显着提高重建质量。
translated by 谷歌翻译
In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyper parameter selection. The starting point of our work is the observation that unrolled iterative methods have the form of a CNN (filtering followed by point-wise non-linearity) when the normal operator (H * H, the adjoint of H times H) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill-posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 × 512 image on the GPU. K.H. Jin acknowledges the support from the "EPFL Fellows" fellowship program co-funded by Marie Curie from the European Unions Horizon 2020 Framework Programme for Research and Innovation under grant agreement 665667.
translated by 谷歌翻译
在目前的工作中,我们提出了一个自制的坐标投影网络(范围),以通过解决逆断层扫描成像问题来从单个SV正弦图中重建无伪像的CT图像。与使用隐式神经代表网络(INR)解决类似问题的最新相关工作相比,我们的基本贡献是一种有效而简单的重新注射策略,可以将层析成像图像重建质量推向监督的深度学习CT重建工作。提出的策略是受线性代数与反问题之间的简单关系的启发。为了求解未确定的线性方程式系统,我们首先引入INR以通过图像连续性之前限制解决方案空间并实现粗糙解决方案。其次,我们建议生成一个密集的视图正式图,以改善线性方程系统的等级并产生更稳定的CT图像解决方案空间。我们的实验结果表明,重新投影策略显着提高了图像重建质量(至少为PSNR的+3 dB)。此外,我们将最近的哈希编码集成到我们的范围模型中,这极大地加速了模型培训。最后,我们评估并联和风扇X射线梁SVCT重建任务的范围。实验结果表明,所提出的范围模型优于两种基于INR的方法和两种受欢迎的监督DL方法。
translated by 谷歌翻译