Quantum kernel methods, i.e., kernel methods with quantum kernels, offer distinct advantages as a hybrid quantum-classical approach to quantum machine learning (QML), including applicability to Noisy Intermediate-Scale Quantum (NISQ) devices and usage for solving all types of machine learning problems. Kernel methods rely on the notion of similarity between points in a higher (possibly infinite) dimensional feature space. For machine learning, the notion of similarity assumes that points close in the feature space should be close in the machine learning task space. In this paper, we discuss the use of variational quantum kernels with task-specific quantum metric learning to generate optimal quantum embeddings (a.k.a. quantum feature encodings) that are specific to machine learning tasks. Such task-specific optimal quantum embeddings, implicitly supporting feature selection, are valuable not only to quantum kernel methods in improving the latter's performance, but they can also be valuable to non-kernel QML methods based on parameterized quantum circuits (PQCs) as pretrained embeddings and for transfer learning. This further demonstrates the quantum utility, and quantum advantage (with classically-intractable quantum embeddings), of quantum kernel methods.
translated by 谷歌翻译
量子机学习(QML)是使用量子计算来计算机器学习算法的使用。随着经典数据的普遍性和重要性,需要采用QML的混合量子古典方法。参数化的量子电路(PQC),特别是量子内核PQC,通常用于QML的混合方法中。在本文中,我们讨论了PQC的一些重要方面,其中包括PQC,量子内核,具有量子优势的量子内核以及量子核的训练性。我们得出的结论是,具有混合核方法的量子核,也就是量子核方法,具有明显的优势作为QML的混合方法。它们不仅适用于嘈杂的中间量子量子(NISQ)设备,而且还可以用于解决所有类型的机器学习问题,包括回归,分类,聚类和降低尺寸。此外,除了量子效用之外,如果量子内核(即量子特征编码)在经典上是棘手的,则可以获得量子优势。
translated by 谷歌翻译
The basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely to efficiently perform computations in an intractably large Hilbert space. In this paper we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyse the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. This kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we can use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualise the working principle with 2-dimensional mini-benchmark datasets.
translated by 谷歌翻译
Quantum Kernel方法是量子机器学习的关键方法之一,这具有不需要优化的优点,并且具有理论简单。凭借这些属性,到目前为止已经开发了几种实验演示和对潜在优势的讨论。但是,正如古典机器学习所在的情况一样,并非所有量子机器学习模型都可以被视为内核方法。在这项工作中,我们探讨了具有深层参数化量子电路的量子机器学习模型,旨在超出传统量子核法。在这种情况下,预计表示功率和性能将得到增强,而培训过程可能是丢储Plateaus问题的瓶颈。然而,我们发现,在训练期间,深度足够的量子电路的参数不会从其初始值中移动到初始值,从而允许一阶扩展参数。这种行为类似于经典文献中的神经切线内核,并且可以通过另一个紧急内核,量子切线内核来描述这种深度变化量子机器学习。数值模拟表明,所提出的Quantum切线内核优于传统的Quantum核心核对ANSATZ生成的数据集。该工作提供了超出传统量子内核法的新方向,并探讨了用深层参数化量子电路的量子机器学习的潜在力量。
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
量子贝叶斯AI(Q-B)是一个新兴领域,可杠杆计算中可用的计算收益。承诺是许多贝叶斯算法中的指数加速。我们的目标是将这些方法直接应用于统计和机器学习问题。我们提供了经典和量子概率之间的二元性,以计算后验量的利益。我们的框架从冯·诺伊曼(Von Neumann)的量子测量原理中的角度统一了MCMC,深度学习和量子学习计算。量子嵌入和神经门也是数据编码和特征选择的重要组成部分。在统计学习中,具有众所周知的内核方法具有自然性。我们说明了两种简单分类算法上量子算法的行为。最后,我们以未来研究的指示得出结论。
translated by 谷歌翻译
数据的表示对于机器学习方法至关重要。内核方法用于丰富特征表示,从而可以更好地概括。量子内核有效地实施了在量子系统的希尔伯特空间中编码经典数据的有效复杂的转换,甚至导致指数加速。但是,我们需要对数据的先验知识来选择可以用作量子嵌入的适当参数量子电路。我们提出了一种算法,该算法通过组合优化过程自动选择最佳的量子嵌入过程,该过程修改了电路的结构,更改门的发生器,其角度(取决于数据点)以及各种门的QUBIT行为。由于组合优化在计算上是昂贵的,因此我们基于均值周围的核基质系数的指数浓度引入了一个标准,以立即丢弃任意大部分的溶液,这些溶液被认为性能较差。与基于梯度的优化(例如可训练的量子内核)相反,我们的方法不受建筑贫瘠的高原影响。我们已经使用人工和现实数据集来证明相对于随机生成的PQC的方法的提高。我们还比较了不同优化算法的效果,包括贪婪的局部搜索,模拟退火和遗传算法,表明算法选择在很大程度上影响了结果。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
数据装配过程是量子机学习的瓶颈之一,可能会否定任何量子加速。鉴于此,必须采用更有效的数据编码策略。我们提出了一种基于光子的骨气数据编码方案,该方案使用较少的编码层嵌入经典数据点,并通过将数据点映射到高维FOCK空间中,从而规避非线性光学组件的需求。电路的表达能力可以通过输入光子的数量来控制。我们的工作阐明了量子光子学在量子机学习模型的表达能力方面提供的独特优势。通过利用光子数依赖的表达能力,我们提出了三种不同的中间尺度量子兼容二进制分类方法,其所需资源适用于不同监督分类任务。
translated by 谷歌翻译
我们分析和分类从电影评论构建的文本数据的观点。为此,我们使用量子机学习算法的基于内核的方法。为了组合量子内核,我们使用使用不同Pauli旋转门组合构造的电路,其中旋转参数是从文本数据获得的数据点的经典非线性函数。为了分析提出的模型的性能,我们使用决策树,增强分类器以及经典和量子支持向量机分析量子模型。我们的结果表明,就所有评估指标而言,量子内核模型或量子支持向量机优于用于分析的所有其他算法。与经典的支持向量机相比,量子支持向量机也会带来明显更好的结果,即使功能数量增加或尺寸增加。结果清楚地表明,如果功能的数量为$ 15 $,则使用量子支持向量机使用量子支持向量机的精度分数提高了$ 9.4 \%$,而经典支持向量机则将其提高。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
由于它们的多功能性,机器学习算法表现出识别许多不同数据集中的模式。然而,随着数据集的大小增加,培训和使用这些统计模型的计算时间很快地增长。Quantum Computing提供了一种新的范例,可以克服这些计算困难的能力。这里,我们将量子类似物提出到K-means聚类,在模拟超导Qubits上实现它,并将其与先前显影的量子支持向量机进行比较。我们发现算法可与群集和分类问题的古典K均值算法相当的算法,发现它具有渐近复杂度$ O(n ^ {3/2} k ^ {1/2} \ log {p})$如果$ n $是数据点数,$ k $是群集的数量,$ p $是数据点的尺寸,在经典模拟中提供了重大的加速。
translated by 谷歌翻译
已知量子计算机可以在某些专业设置中使用经典的最先进的机器学习方法提供加速。例如,已证明量子内核方法可以在离散对数问题的学习版本上提供指数加速。了解量子模型的概括对于实现实际利益问题的类似加速至关重要。最近的结果表明,量子特征空间的指数大小阻碍了概括。尽管这些结果表明,量子模型在量子数数量较大时无法概括,但在本文中,我们表明这些结果依赖于过度限制性的假设。我们通过改变称为量子内核带宽的超参数来考虑更广泛的模型。我们分析了大量限制,并为可以以封闭形式求解的量子模型的概括提供了明确的公式。具体而言,我们表明,更改带宽的值可以使模型从不能概括到任何目标函数到对准目标的良好概括。我们的分析表明,带宽如何控制内核积分操作员的光谱,从而如何控制模型的电感偏置。我们从经验上证明,我们的理论正确地预测带宽如何影响质量模型在具有挑战性的数据集上的概括,包括远远超出我们理论假设的数据集。我们讨论了结果对机器学习中量子优势的含义。
translated by 谷歌翻译
近术量子器件在机器学习(ML)中的应用引起了很多关注。在一个这样的尝试中,mitarai等。(2018)提出了一个框架,用于使用量子电路进行监督ML任务,称为量子电路学习(QCL)。由于使用量子电路,QCL可以采用指数上高维的希尔伯特空间作为其特征空间。然而,与古典算法相比的效率仍未探索。在本研究中,使用称为计数草图的统计技术,我们提出了一种使用相同的Hilbert空间的典型ML算法。在数值模拟中,我们所提出的算法对QCL表示类似的QCL,对于几毫安任务。这提供了一种新的视角,其要考虑量子M1算法的计算和内存效率。
translated by 谷歌翻译
预测器重要性是经典和量子机学习(QML)数据预处理管道的关键部分。这项工作介绍了此类研究的第一个研究,其中探索了对QML模型的重要性与其经典的机器学习(CML)等效物进行了对比。我们开发了一种混合量子式体系结构,其中训练了QML模型,并根据现实世界数据集上的经典算法计算特征重要性值。该体系结构已在ESPN幻想足球数据上使用Qiskit StateSvector模拟器和IBM量子硬件(例如IBMQ Mumbai和IBMQ Montreal Systems)实现。即使我们处于嘈杂的中间量子量子(NISQ)时代,物理量子计算结果还是有希望的。为了促进当前量子标尺,我们创建了一个数据分层,模型聚合和新颖的验证方法。值得注意的是,与经典模型相比,量子模型的特征重要性具有更高的变化。我们可以证明等效QML和CML模型通过多样性测量是互补的。 QML和CML之间的多样性表明,两种方法都可以以不同的方式促进解决方案。在本文中,我们关注量子支持向量分类器(QSVC),变分量子电路(VQC)及其经典对应物。 ESPN和IBM幻想足球贸易助理将高级统计分析与沃森发现的自然语言处理相结合,以提供公平的个性化贸易建议。在这里,已经考虑了每个播放器的播放器评估数据,并且可以扩展此工作以计算其他QML模型(例如Quantum Boltzmann机器)的特征重要性。
translated by 谷歌翻译
由于量子电路上的旋转组件,基于变异电路的某些量子神经网络可以被认为等于经典的傅立叶网络。另外,它们可用于预测连续函数的傅立叶系数。时间序列数据表示时间变量的状态。由于某些时间序列数据也可以视为连续功能,因此我们可以期望量子机学习模型能够在时间序列数据上成功执行许多数据分析任务。因此,重要的是研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系。在本文中,我们通过使用需要几个量子门的简单量子运算符,浏览经典数据预处理和对Arima模型进行预测的量子类似物。然后,我们讨论未来的方向和一些可用于量子计算机时间数据分析的工具/算法。
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
Quantum computers promise to enhance machine learning for practical applications. Quantum machine learning for real-world data has to handle extensive amounts of high-dimensional data. However, conventional methods for measuring quantum kernels are impractical for large datasets as they scale with the square of the dataset size. Here, we measure quantum kernels using randomized measurements. The quantum computation time scales linearly with dataset size and quadratic for classical post-processing. While our method scales in general exponentially in qubit number, we gain a substantial speed-up when running on intermediate-sized quantum computers. Further, we efficiently encode high-dimensional data into quantum computers with the number of features scaling linearly with the circuit depth. The encoding is characterized by the quantum Fisher information metric and is related to the radial basis function kernel. Our approach is robust to noise via a cost-free error mitigation scheme. We demonstrate the advantages of our methods for noisy quantum computers by classifying images with the IBM quantum computer. To achieve further speedups we distribute the quantum computational tasks between different quantum computers. Our method enables benchmarking of quantum machine learning algorithms with large datasets on currently available quantum computers.
translated by 谷歌翻译
最近,随着医学的数字化,利用临床部位收集的现实医疗数据一直在吸引注意力。在本研究中,量子计算被应用于线性非高斯无循环模型,以发现单独从现实世界医疗数据的因果关系。具体而言,使用量子内核计算Directlingam,因果发现算法的独立测量,并验证了实际医疗数据的准确性。当使用量子内核(Qlindam)的DirectlingAm应用于现实世界的医疗数据时,确认了一个案例,其中当数据量很小时,可以正确估计因果结构,这是现有方法不可能。此外,Qlingam在使用IBMQ的实验中在实验中在实验中实现。建议Qlingam可能能够发现新的医学知识并为医学问题的解决方案提供贡献,即使只有少量数据都有。
translated by 谷歌翻译
对象之间的相似性在广泛的区域中非常重要。虽然可以使用从搁板距离函数测量相似性,但它们可能无法捕获相似性的固有含义,这往往取决于底层数据和任务。此外,传统距离函数限制了待对称的相似度措施的空间,并且不直接允许比较来自不同空间的对象。我们建议使用量子网络(GQSIM)来学习依赖于学习的任务依赖性(A)不需要具有相同维度的数据之间的对称相似性。我们分析了这种相似函数的特性(对于一个简单的情况),数值(用于复杂的情况)并显示这些相似度措施可以提取数据的突出特征。我们还证明了使用该技术的相似度测量是$(\ epsilon,\ gamma,\ tau)$ - 良好,从而造成理论上保证性能。最后,我们通过对三个相关应用程序应用这种技术进行结论 - 分类,图形完成,生成建模。
translated by 谷歌翻译