预测器重要性是经典和量子机学习(QML)数据预处理管道的关键部分。这项工作介绍了此类研究的第一个研究,其中探索了对QML模型的重要性与其经典的机器学习(CML)等效物进行了对比。我们开发了一种混合量子式体系结构,其中训练了QML模型,并根据现实世界数据集上的经典算法计算特征重要性值。该体系结构已在ESPN幻想足球数据上使用Qiskit StateSvector模拟器和IBM量子硬件(例如IBMQ Mumbai和IBMQ Montreal Systems)实现。即使我们处于嘈杂的中间量子量子(NISQ)时代,物理量子计算结果还是有希望的。为了促进当前量子标尺,我们创建了一个数据分层,模型聚合和新颖的验证方法。值得注意的是,与经典模型相比,量子模型的特征重要性具有更高的变化。我们可以证明等效QML和CML模型通过多样性测量是互补的。 QML和CML之间的多样性表明,两种方法都可以以不同的方式促进解决方案。在本文中,我们关注量子支持向量分类器(QSVC),变分量子电路(VQC)及其经典对应物。 ESPN和IBM幻想足球贸易助理将高级统计分析与沃森发现的自然语言处理相结合,以提供公平的个性化贸易建议。在这里,已经考虑了每个播放器的播放器评估数据,并且可以扩展此工作以计算其他QML模型(例如Quantum Boltzmann机器)的特征重要性。
translated by 谷歌翻译
本文使用Qiskit软件堆栈提出了金融支付行业中的量子支持矢量机(QSVM)算法的第一个端到端应用,用于金融支付行业中的分类问题。基于实际卡支付数据,进行了详尽的比较,以评估当前最新的量子机学习算法对经典方法带来的互补影响。使用量子支持矢量机的特征映射特征来探索一种搜索最佳功能的新方法。使用欺诈特定的关键绩效指标比较结果:基于人类专业知识(规则决策),经典的机器学习算法(随机森林,XGBoost)和基于量子的机器学习算法,从分析中提取了准确性,回忆和假阳性率。 。此外,通过使用结合经典和量子算法的合奏模型来更好地改善预防欺诈的决策,从而探索了混合经典量子方法。我们发现,正如预期的那样,结果高度依赖于用于选择它们的特征选择和算法。 QSVM对特征空间进行了互补的探索,从而在大幅度降低的数据集上拟合了量子硬件的当前状态,从而提高了混合量子古典方法的欺诈检测准确性。
translated by 谷歌翻译
The basic idea of quantum computing is surprisingly similar to that of kernel methods in machine learning, namely to efficiently perform computations in an intractably large Hilbert space. In this paper we explore some theoretical foundations of this link and show how it opens up a new avenue for the design of quantum machine learning algorithms. We interpret the process of encoding inputs in a quantum state as a nonlinear feature map that maps data to quantum Hilbert space. A quantum computer can now analyse the input data in this feature space. Based on this link, we discuss two approaches for building a quantum model for classification. In the first approach, the quantum device estimates inner products of quantum states to compute a classically intractable kernel. This kernel can be fed into any classical kernel method such as a support vector machine. In the second approach, we can use a variational quantum circuit as a linear model that classifies data explicitly in Hilbert space. We illustrate these ideas with a feature map based on squeezing in a continuous-variable system, and visualise the working principle with 2-dimensional mini-benchmark datasets.
translated by 谷歌翻译
近年来,近期量子机器学习的研究已经探索了归一机学习算法如何获得Quantum核(相似度措施)的访问能够优于其纯粹的经典对应物。虽然理论上的工作已经在合成数据集上显示了可提供的优势,但没有对迄今为止的工作证明估计量子优势是可实现的,并且具有什么样的数据集。在本文中,我们报告了医疗保健和生命科学的经验量子优势(EQA)的首次系统调查,并提出了一个学习EQA的端到端框架。我们选择了电子健康记录(EHRS)数据子集,并创建了5-20个功能的配置空间和200-300个培训样本。对于每个配置坐标,我们使用IBM量子计算机训练基于径向基函数(RBF)内核和Quantum型号的径向基函数(RBF)内核和量子型号进行培训。我们经验鉴定了Quantum核可以在特定数据集中提供优势的制度,并且引入了地形坚固耐性索引,以帮助定量地估计给定模型的准确度作为特征数和样本大小的函数来执行的指标。这里介绍的概括框架代表了朝向可以存在量子优势的数据集的先验识别的关键步骤。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. Such an evaluation is difficult owing to the availability and price of physical quantum processing units. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware cloud computing service can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware provides the ability to execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, of the four quantum devices tested, only IonQ's Harmony achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
自我监督学习的复苏,其中深入学习模型从数据中产生自己的监督信号,承诺可扩展的方式来解决没有人为注释的大量越来越大的现实数据集。然而,这些方法的惊人的计算复杂性使得对于最先进的性能,经典硬件要求表示有关进一步进展的重要瓶颈。在这里,我们采取了了解量子神经网络是否能够满足对更强大的架构的需求并在原则上的原则上测试其有效性的步骤。有趣的是,即使当量子电路被采样,使用等效结构化的经典网络,我们将遵守使用小型量子神经网络的视觉表示的学习的数值优势。此外,我们应用我们的最佳量子模型,以对IBMQ \ _Paris量子计算机进行分类,并发现当前嘈杂的设备可以在下游任务上实现对等效经典模型的平等准确性。
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
与经典的机器学习方法相比,量子机学习(QML)尚未广泛证明其优势。到目前为止,只有在特定情况下,某些量子启发的技术已经实现了少量的增量优势,而在中期未来的混合量子计算中,一些实验案例有望实现(不考虑与使用量子的优化相关的成就 - 周期算法)。当前的量子计算机嘈杂,几乎没有量子的测试,因此很难证明QML方法的当前和潜在量子优势。这项研究表明,在数据预处理步骤中,我们可以通过使用线性判别分析(LDA)来实现量子分类器的更好的经典编码和性能。结果,变异量子算法(VQA)通过LDA技术和优于基线基线经典分类器显示出平衡精度的性能。
translated by 谷歌翻译
由于在执行基本线性代数子程序(BLAS)时,大多数ML算法中的基本元素,量子机学习(QML)算法在机器学习(ML)域中获得了很大的相关性。通过利用BLAS操作,我们提出,实现和分析了$ \ MATHCAL {O}(NKLOG(D)I / C)$的低时间复杂度,以将其应用于读出读数鉴别量子态的根本问题。辨别量子状态允许识别量子状态$ | 0 \ rangle $和$ | 1 \ rangle从低级同步和正交信号(IQ)数据,并且可以使用自定义ml模型来完成。为了减少经典计算机的依赖性,我们使用Qk-means在IBMQ波哥大设备上执行状态辨别,并设法查找高达98.7%的分配保真度,其仅低于K-Means算法的分配保真。从将算法应用于量子状态的组合产生的分配保真度评分显示了使用Pearson相关系数的相关性分析,其中证据显示(1,2)和(2,3)邻近Qubit耦合的跨谈分析的装置。
translated by 谷歌翻译
Quantum computing is a promising paradigm based on quantum theory for performing fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k-Means algorithms, exploiting different degree of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version, still obtaining comparable clustering results.
translated by 谷歌翻译
我们分析和分类从电影评论构建的文本数据的观点。为此,我们使用量子机学习算法的基于内核的方法。为了组合量子内核,我们使用使用不同Pauli旋转门组合构造的电路,其中旋转参数是从文本数据获得的数据点的经典非线性函数。为了分析提出的模型的性能,我们使用决策树,增强分类器以及经典和量子支持向量机分析量子模型。我们的结果表明,就所有评估指标而言,量子内核模型或量子支持向量机优于用于分析的所有其他算法。与经典的支持向量机相比,量子支持向量机也会带来明显更好的结果,即使功能数量增加或尺寸增加。结果清楚地表明,如果功能的数量为$ 15 $,则使用量子支持向量机使用量子支持向量机的精度分数提高了$ 9.4 \%$,而经典支持向量机则将其提高。
translated by 谷歌翻译
FIG. 1. Schematic diagram of a Variational Quantum Algorithm (VQA). The inputs to a VQA are: a cost function C(θ), with θ a set of parameters that encodes the solution to the problem, an ansatz whose parameters are trained to minimize the cost, and (possibly) a set of training data {ρ k } used during the optimization. Here, the cost can often be expressed in the form in Eq. ( 3), for some set of functions {f k }. Also, the ansatz is shown as a parameterized quantum circuit (on the left), which is analogous to a neural network (also shown schematically on the right). At each iteration of the loop one uses a quantum computer to efficiently estimate the cost (or its gradients). This information is fed into a classical computer that leverages the power of optimizers to navigate the cost landscape C(θ) and solve the optimization problem in Eq. ( 1). Once a termination condition is met, the VQA outputs an estimate of the solution to the problem. The form of the output depends on the precise task at hand. The red box indicates some of the most common types of outputs.
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译
在过去的十年中,机器学习彻底改变了基于视力的质量评估,卷积神经网络(CNN)现在已成为标准。在本文中,我们考虑了该开发中的潜在下一步,并描述了有效地将经典图像数据映射到量子状态并允许可靠的图像分析的Quanvolutional神经网络(QNN)算法。我们实际上演示了如何在计算机视觉中利用量子设备以及如何将量子卷积引入古典CNN中。在处理工业质量控制中的现实世界用例时,我们在Pennylane框架内实施了混合QNN模型,并从经验上观察它,可以使用比经典CNN更少的培训数据实现更好的预测。换句话说,我们从经验上观察到真正的量子优势,对于由于卓越的数据编码而引起的工业应用。
translated by 谷歌翻译