由于在执行基本线性代数子程序(BLAS)时,大多数ML算法中的基本元素,量子机学习(QML)算法在机器学习(ML)域中获得了很大的相关性。通过利用BLAS操作,我们提出,实现和分析了$ \ MATHCAL {O}(NKLOG(D)I / C)$的低时间复杂度,以将其应用于读出读数鉴别量子态的根本问题。辨别量子状态允许识别量子状态$ | 0 \ rangle $和$ | 1 \ rangle从低级同步和正交信号(IQ)数据,并且可以使用自定义ml模型来完成。为了减少经典计算机的依赖性,我们使用Qk-means在IBMQ波哥大设备上执行状态辨别,并设法查找高达98.7%的分配保真度,其仅低于K-Means算法的分配保真。从将算法应用于量子状态的组合产生的分配保真度评分显示了使用Pearson相关系数的相关性分析,其中证据显示(1,2)和(2,3)邻近Qubit耦合的跨谈分析的装置。
translated by 谷歌翻译
Quantum computing is a promising paradigm based on quantum theory for performing fast computations. Quantum algorithms are expected to surpass their classical counterparts in terms of computational complexity for certain tasks, including machine learning. In this paper, we design, implement, and evaluate three hybrid quantum k-Means algorithms, exploiting different degree of parallelism. Indeed, each algorithm incrementally leverages quantum parallelism to reduce the complexity of the cluster assignment step up to a constant cost. In particular, we exploit quantum phenomena to speed up the computation of distances. The core idea is that the computation of distances between records and centroids can be executed simultaneously, thus saving time, especially for big datasets. We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version, still obtaining comparable clustering results.
translated by 谷歌翻译
For a large number of tasks, quantum computing demonstrates the potential for exponential acceleration over classical computing. In the NISQ era, variable-component subcircuits enable applications of quantum computing. To reduce the inherent noise and qubit size limitations of quantum computers, existing research has improved the accuracy and efficiency of Variational Quantum Algorithm (VQA). In this paper, we explore the various ansatz improvement methods for VQAs at the gate level and pulse level, and classify, evaluate and summarize them.
translated by 谷歌翻译
由于它们的多功能性,机器学习算法表现出识别许多不同数据集中的模式。然而,随着数据集的大小增加,培训和使用这些统计模型的计算时间很快地增长。Quantum Computing提供了一种新的范例,可以克服这些计算困难的能力。这里,我们将量子类似物提出到K-means聚类,在模拟超导Qubits上实现它,并将其与先前显影的量子支持向量机进行比较。我们发现算法可与群集和分类问题的古典K均值算法相当的算法,发现它具有渐近复杂度$ O(n ^ {3/2} k ^ {1/2} \ log {p})$如果$ n $是数据点数,$ k $是群集的数量,$ p $是数据点的尺寸,在经典模拟中提供了重大的加速。
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
由于量子电路上的旋转组件,基于变异电路的某些量子神经网络可以被认为等于经典的傅立叶网络。另外,它们可用于预测连续函数的傅立叶系数。时间序列数据表示时间变量的状态。由于某些时间序列数据也可以视为连续功能,因此我们可以期望量子机学习模型能够在时间序列数据上成功执行许多数据分析任务。因此,重要的是研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系。在本文中,我们通过使用需要几个量子门的简单量子运算符,浏览经典数据预处理和对Arima模型进行预测的量子类似物。然后,我们讨论未来的方向和一些可用于量子计算机时间数据分析的工具/算法。
translated by 谷歌翻译
Powerful hardware services and software libraries are vital tools for quickly and affordably designing, testing, and executing quantum algorithms. A robust large-scale study of how the performance of these platforms scales with the number of qubits is key to providing quantum solutions to challenging industry problems. Such an evaluation is difficult owing to the availability and price of physical quantum processing units. This work benchmarks the runtime and accuracy for a representative sample of specialized high-performance simulated and physical quantum processing units. Results show the QMware cloud computing service can reduce the runtime for executing a quantum circuit by up to 78% compared to the next fastest option for algorithms with fewer than 27 qubits. The AWS SV1 simulator offers a runtime advantage for larger circuits, up to the maximum 34 qubits available with SV1. Beyond this limit, QMware provides the ability to execute circuits as large as 40 qubits. Physical quantum devices, such as Rigetti's Aspen-M2, can provide an exponential runtime advantage for circuits with more than 30. However, the high financial cost of physical quantum processing units presents a serious barrier to practical use. Moreover, of the four quantum devices tested, only IonQ's Harmony achieves high fidelity with more than four qubits. This study paves the way to understanding the optimal combination of available software and hardware for executing practical quantum algorithms.
translated by 谷歌翻译
在这里,我们提出了一种基于变异量子电路聚类数据的量子算法。该算法允许将数据分类为许多群集,并且可以轻松地以几量噪声中间尺度量子(NISQ)设备实现。该算法的概念依赖于将聚类问题减少到优化,然后通过差异量子eigensolver(VQE)与非正交量子符号状态相结合。实际上,该方法使用目标希尔伯特空间的最大正交状态,而不是通常的计算基础,即使很少有Qubits,也可以考虑大量簇。我们使用实际数据集对数值模拟进行基准测试算法,即使有一个单个量子,也显示出出色的性能。此外,通过构造,量子化算法的张量网络模拟可以在当前经典硬件上运行的量子启发的聚类算法。
translated by 谷歌翻译
预测器重要性是经典和量子机学习(QML)数据预处理管道的关键部分。这项工作介绍了此类研究的第一个研究,其中探索了对QML模型的重要性与其经典的机器学习(CML)等效物进行了对比。我们开发了一种混合量子式体系结构,其中训练了QML模型,并根据现实世界数据集上的经典算法计算特征重要性值。该体系结构已在ESPN幻想足球数据上使用Qiskit StateSvector模拟器和IBM量子硬件(例如IBMQ Mumbai和IBMQ Montreal Systems)实现。即使我们处于嘈杂的中间量子量子(NISQ)时代,物理量子计算结果还是有希望的。为了促进当前量子标尺,我们创建了一个数据分层,模型聚合和新颖的验证方法。值得注意的是,与经典模型相比,量子模型的特征重要性具有更高的变化。我们可以证明等效QML和CML模型通过多样性测量是互补的。 QML和CML之间的多样性表明,两种方法都可以以不同的方式促进解决方案。在本文中,我们关注量子支持向量分类器(QSVC),变分量子电路(VQC)及其经典对应物。 ESPN和IBM幻想足球贸易助理将高级统计分析与沃森发现的自然语言处理相结合,以提供公平的个性化贸易建议。在这里,已经考虑了每个播放器的播放器评估数据,并且可以扩展此工作以计算其他QML模型(例如Quantum Boltzmann机器)的特征重要性。
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
变异量子算法(VQA)在NISQ时代表现出巨大的潜力。在VQA的工作流程中,Ansatz的参数迭代更新以近似所需的量子状态。我们已经看到了各种努力,以较少的大门起草更好的安萨兹。在量子计算机中,栅极Ansatz最终将转换为控制信号,例如TransMons上的微波脉冲。并且对照脉冲需要精心校准,以最大程度地减少误差(例如过度旋转和旋转)。在VQA的情况下,此过程将引入冗余,但是VQAS的变异性能自然可以通过更新幅度和频率参数来处理过度旋转和重组的问题。因此,我们提出了PAN,这是一种用于VQA的天然脉冲ANSATZ GENTARATOR框架。我们生成具有可训练参数用于振幅和频率的天然脉冲ansatz。在我们提出的锅中,我们正在调整参数脉冲,这些脉冲在NISQ计算机上得到了内在支持。考虑到本机 - 脉冲ANSATZ不符合参数迁移规则,我们需要部署非级别优化器。为了限制发送到优化器的参数数量,我们采用了一种生成本机 - 脉冲ANSATZ的渐进式方式。实验是在模拟器和量子设备上进行的,以验证我们的方法。当在NISQ机器上采用时,PAN获得的延迟平均提高了86%。 PAN在H2和HEH+上的VQE任务分别能够达到99.336%和96.482%的精度,即使NISQ机器中有很大的噪声。
translated by 谷歌翻译
预计量子计算将提供巨大的计算能力,可以为许多数据科学问题提供有效的解决方案。但是,当前一代的量子设备很小且嘈杂,这使得处理与实际问题相关的大数据集变得困难。核心选择旨在通过减少输入数据的大小而不损害准确性来避免此问题。最近的工作表明,核心选择可以帮助实施量子K-均值聚类问题。但是,尚未探索核心选择对量子K-均值聚类性能的影响。在这项工作中,我们比较了两种核心技术(BFL16和Oneshot)的相对性能以及每种情况下的核心结构的大小,相对于各种数据集,并布局在实现量子算法中的核心选择的优势和局限性。我们还研究了去极化量子噪声和位叶片误差的影响,并实施了量子自动编码器技术以超过噪声效应。我们的工作为未来在近期量子设备上实施数据科学算法提供了有用的见解,这些量子设备通过核心选择减少了问题大小。
translated by 谷歌翻译
在这项工作中,我们提供了一个量子Hopfield关联内存(QHAM),并使用IBM量子体验展示其在仿真和硬件中的能力。 QHAM基于量子神经元设计,可以用于许多不同的机器学习应用,并且可以在真实量子硬件上实现,而不需要中间电路测量或重置操作。我们通过使用硬件噪声模型以及15 QUBIT IBMQ_16_MELBOURBORNE设备的模拟来分析神经元和全QHAM的准确性。量子神经元和QHAM被证明是有弹性的噪声,并且需要低Qubit开销和栅极复杂性。我们通过测试其有效的内存容量来基准QHAM,并在Quantum硬件的NISQ-ERA中展示其能力。该演示在NISQ-ERA量子硬件中实现的第一功能QHAM是在量子计算前沿的机器学习的重要步骤。
translated by 谷歌翻译
本文旨在研究基于电路的混合量子卷积神经网络(QCNNS)如何在遥感的上下文中成功地在图像分类器中成功使用。通过在标准神经网络内引入量子层来丰富CNN的经典架构。本工作中提出的新型QCNN应用于土地使用和陆地覆盖(LULC)分类,选择为地球观测(EO)用例,并在欧元区数据集上测试用作参考基准。通过证明QCNN性能高于经典对应物,多标量分类的结果证明了所提出的方法的有效性。此外,各种量子电路的研究表明,利用量子纠缠的诸如最佳分类评分。本研究强调了将量子计算应用于EO案例研究的潜在能力,并为期货调查提供了理论和实验背景。
translated by 谷歌翻译
我们展示了一个新的开源软件,用于快速评估量子电路和绝热进化,这充分利用了硬件加速器。越来越多的Quantum Computing兴趣和Quantum硬件设备的最新发展的兴趣激励了新的高级计算工具的开发,其专注于性能和使用简单性。在这项工作中,我们介绍了一种新的Quantum仿真框架,使开发人员能够将硬件或平台实现的所有复杂方面委托给库,以便他们专注于手头的问题和量子算法。该软件采用Scratch设计,使用仿真性能,代码简单和用户友好的界面作为目标目标。它利用了硬件加速,例如多线CPU,单个GPU和多GPU设备。
translated by 谷歌翻译
Machine learning (ML) has recently facilitated many advances in solving problems related to many-body physical systems. Given the intrinsic quantum nature of these problems, it is natural to speculate that quantum-enhanced machine learning will enable us to unveil even greater details than we currently have. With this motivation, this paper examines a quantum machine learning approach based on shallow variational ansatz inspired by tensor networks for supervised learning tasks. In particular, we first look at the standard image classification tasks using the Fashion-MNIST dataset and study the effect of repeating tensor network layers on ansatz's expressibility and performance. Finally, we use this strategy to tackle the problem of quantum phase recognition for the transverse-field Ising and Heisenberg spin models in one and two dimensions, where we were able to reach $\geq 98\%$ test-set accuracies with both multi-scale entanglement renormalization ansatz (MERA) and tree tensor network (TTN) inspired parametrized quantum circuits.
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
已经表明,可以使用具有合适的数据访问的经典算法有效地复制一些量子机器学习算法的表观优点 - 一种称为渐变化的过程。现有的追逐工作的工作比较量子算法占据N-qubit Quantum State $ | x \ rangle = \ sum_ {i} x_i | i \ rangle $的副本到具有样本和查询(Sq)访问的经典算法矢量$ x $。在本说明中,我们证明了具有SQ访问的经典算法可以比量子状态输入的量子算法呈指数级速率地实现一些学习任务。因为经典算法是量子算法的子集,所以这表明SQ接入有时可以比量子状态输入更强大。我们的研究结果表明,在某些学习任务中没有指数量子优势可能是由于相对于量子状态输入的SQ访问过于强大。如果我们将量子算法与量子状态的输入进行比较到具有对量子状态上的测量数据的经典算法,则量子优势的景观可以显着不同。
translated by 谷歌翻译
我们设计和分析了量子变压器,扩展了最先进的经典变压器神经网络体系结构,已知在自然语言处理和图像分析中表现出色。在先前用于数据加载和正交神经层的参数化量子电路的工作的基础上,我们引入了三种量子注意机制,包括基于复合矩阵的量子变压器。这些量子体系结构可以使用浅量子电路构建,并可以提供定性不同的分类模型。与最佳的经典变压器和其他经典基准相比,我们对标准医疗图像数据集进行了量子变压器的广泛模拟,这些量子变压器表现出竞争力,有时表现更好。与经典算法相对于分类图像的大小,我们的量子注意层的计算复杂性被证明是有利的。与拥有数百万参数的最佳经典方法相比,我们的量子体系结构具有数千个参数。最后,我们在超导量子计算机上实施了量子变压器,并获得了多达六个量子实验的令人鼓舞的结果。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译