我们探讨了使用物理知识的神经网络急剧加速管理动力系统动态的常用代数方程的解决方案。在暂时稳定性评估方面,传统应用的方法要么携带显着的计算负担,需要模型简化,或使用过于保守的代理模型。传统的神经网络可以规避这些限制,而是面临着高质量训练数据集的高需求,而他们忽略了潜在的控制方程。物理知识的神经网络是不同的:它们将电力系统差分代数方程直接纳入神经网络培训,并大大降低了对训练数据的需求。本文深入潜入物理知识神经网络的电力系统瞬态稳定性评估的性能。介绍一种新的神经网络培训程序,以促进彻底的比较,我们探讨了物理知识的神经网络如何与传统的差分代数求解器和经典神经网络在计算时间,数据要求和预测准确性方面比较。我们说明了昆医生的两国系统的调查结果,并评估了物理知识的神经网络的机会和挑战,用作瞬态稳定性分析工具,突出了进一步开发这种方法的可能途径。
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
能源部门的深度脱碳将需要大量的随机可再生能源渗透和大量的网格资产协调。对于面对这种变化而负责维持电网稳定性和安全性的电力系统运营商来说,这是一个具有挑战性的范式。凭借从复杂数据集中学习并提供有关快速时间尺度的预测解决方案的能力,机器学习(ML)得到了很好的选择,可以帮助克服这些挑战,因为在未来几十年中,电力系统转变。在这项工作中,我们概述了与构建可信赖的ML模型相关的五个关键挑战(数据集生成,数据预处理,模型培训,模型评估和模型嵌入),这些模型从基于物理的仿真数据中学习。然后,我们演示如何将单个模块连接在一起,每个模块都克服了各自的挑战,在机器学习管道中的顺序阶段,如何有助于提高训练过程的整体性能。特别是,我们实施了通过反馈连接学习管道的不同元素的方法,从而在模型培训,绩效评估和重新训练之间“关闭循环”。我们通过学习与拟议的北海风能中心系统的详细模型相关的N-1小信号稳定性边缘来证明该框架,其组成模块的有效性及其反馈连接。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Non-equilibrium chemistry is a key process in the study of the InterStellar Medium (ISM), in particular the formation of molecular clouds and thus stars. However, computationally it is among the most difficult tasks to include in astrophysical simulations, because of the typically high (>40) number of reactions, the short evolutionary timescales (about $10^4$ times less than the ISM dynamical time) and the characteristic non-linearity and stiffness of the associated Ordinary Differential Equations system (ODEs). In this proof of concept work, we show that Physics Informed Neural Networks (PINN) are a viable alternative to traditional ODE time integrators for stiff thermo-chemical systems, i.e. up to molecular hydrogen formation (9 species and 46 reactions). Testing different chemical networks in a wide range of densities ($-2< \log n/{\rm cm}^{-3}< 3$) and temperatures ($1 < \log T/{\rm K}< 5$), we find that a basic architecture can give a comfortable convergence only for simplified chemical systems: to properly capture the sudden chemical and thermal variations a Deep Galerkin Method is needed. Once trained ($\sim 10^3$ GPUhr), the PINN well reproduces the strong non-linear nature of the solutions (errors $\lesssim 10\%$) and can give speed-ups up to a factor of $\sim 200$ with respect to traditional ODE solvers. Further, the latter have completion times that vary by about $\sim 30\%$ for different initial $n$ and $T$, while the PINN method gives negligible variations. Both the speed-up and the potential improvement in load balancing imply that PINN-powered simulations are a very palatable way to solve complex chemical calculation in astrophysical and cosmological problems.
translated by 谷歌翻译
在本文中,我们根据卷积神经网络训练湍流模型。这些学到的湍流模型改善了在模拟时为不可压缩的Navier-Stokes方程的溶解不足的低分辨率解。我们的研究涉及开发可区分的数值求解器,该求解器通过多个求解器步骤支持优化梯度的传播。这些属性的重要性是通过那些模型的出色稳定性和准确性来证明的,这些模型在训练过程中展开了更多求解器步骤。此外,我们基于湍流物理学引入损失项,以进一步提高模型的准确性。这种方法应用于三个二维的湍流场景,一种均匀的腐烂湍流案例,一个暂时进化的混合层和空间不断发展的混合层。与无模型模拟相比,我们的模型在长期A-posterii统计数据方面取得了重大改进,而无需将这些统计数据直接包含在学习目标中。在推论时,我们提出的方法还获得了相似准确的纯粹数值方法的实质性改进。
translated by 谷歌翻译
Machine learning (ML) algorithms are remarkably good at approximating complex non-linear relationships. Most ML training processes, however, are designed to deliver ML tools with good average performance, but do not offer any guarantees about their worst-case estimation error. For safety-critical systems such as power systems, this places a major barrier for their adoption. So far, approaches could determine the worst-case violations of only trained ML algorithms. To the best of our knowledge, this is the first paper to introduce a neural network training procedure designed to achieve both a good average performance and minimum worst-case violations. Using the Optimal Power Flow (OPF) problem as a guiding application, our approach (i) introduces a framework that reduces the worst-case generation constraint violations during training, incorporating them as a differentiable optimization layer; and (ii) presents a neural network sequential learning architecture to significantly accelerate it. We demonstrate the proposed architecture on four different test systems ranging from 39 buses to 162 buses, for both AC-OPF and DC-OPF applications.
translated by 谷歌翻译
在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。直到最近才引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是Multigrid算法的重要组成部分,在这种情况下尚未受到很多关注。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4Color Gaussseidel Smoothers。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大网格上的Multigrid算法的收敛速率。
translated by 谷歌翻译
随着数据的不断增加,将现代机器学习方法应用于建模和控制等领域的兴趣爆炸。但是,尽管这种黑盒模型具有灵活性和令人惊讶的准确性,但仍然很难信任它们。结合两种方法的最新努力旨在开发灵活的模型,这些模型仍然可以很好地推广。我们称为混合分析和建模(HAM)的范式。在这项工作中,我们调查了使用数据驱动模型纠正基于错误的物理模型的纠正源术语方法(COSTA)。这使我们能够开发出可以进行准确预测的模型,即使问题的基本物理学尚未得到充分理解。我们将Costa应用于铝电解电池中的Hall-H \'Eroult工艺。我们证明该方法提高了准确性和预测稳定性,从而产生了总体可信赖的模型。
translated by 谷歌翻译
在概述中,引入了通用数学对象(映射),并解释了其与模型物理参数化的关系。引入了可用于模拟和/或近似映射的机器学习(ML)工具。ML的应用在模拟现有参数化,开发新的参数化,确保物理约束和控制开发应用程序的准确性。讨论了一些允许开发人员超越标准参数化范式的ML方法。
translated by 谷歌翻译
物理知识的神经网络(PINN)是一种流行的方法,可以将有关物理系统的先验知识纳入学习框架。众所周知,针对较小的训练集,提出更好的概括问题,并且训练更快。在本文中,我们表明,与纯数据驱动的神经网络相比,使用PINN不仅有利于训练性能,而且使我们能够提取有关近似解决方案质量的重要信息。假设PINN训练的基础微分方程是一个普通的微分方程,我们会在PINN预测误差上获得严格的上限。即使适用于未包含在训练阶段的输入数据,也没有任何有关真实解决方案的知识。因此,我们的后验误差估计是证明PINN的必要步骤。我们将误差估计器应用于两个学术玩具问题,其中一个属于模型预测性控制类别,从而显示了派生结果的实际使用。
translated by 谷歌翻译
由于其高能量强度,建筑物在当前全球能源转型中发挥着重要作用。建筑模型是普遍无处不在的,因为在建筑物的每个阶段都需要它们,即设计,改装和控制操作。基于物理方程式的古典白盒式模型必然遵循物理规律,但其底层结构的具体设计可能会阻碍他们的表现力,从而阻碍他们的准确性。另一方面,黑匣子型号更适合捕获非线性建筑动态,因此通常可以实现更好的准确性,但它们需要大量的数据,并且可能不会遵循物理规律,这是神经网络特别常见的问题(NN)模型。为了抵消这种已知的概括问题,最近介绍了物理知识的NNS,研究人员在NNS的结构中介绍了以底层底层物理法律接地,并避免经典的NN概括问题。在这项工作中,我们介绍了一种新的物理信息的NN架构,被称为身体一致的NN(PCNN),其仅需要过去的运行数据并且没有工程开销,包括在并联运行到经典NN的线性模块中的先前知识。我们正式证明,这些网络是物理上一致的 - 通过设计甚至在看不见的数据 - 关于不同的控制输入和邻近区域的温度。我们在案例研究中展示了他们的表现,其中PCNN比3美元的古典物理型电阻电容模型更好地获得高达50美元的准确性。此外,尽管结构受到约束的结构,但PCNNS在验证数据上对古典NNS对古典NNS进行了类似的性能,使训练数据较少,并保留高表达性以解决泛化问题。
translated by 谷歌翻译
时域仿真是电力系统瞬态稳定性分析的基础。准确可靠的模拟取决于准确的动态分量建模。在实用电力系统中,动态元件建模长期面临模型测定和模型校准的挑战,特别是随着可再生于可再生发电和电力电子产品的快速发展。本文基于神经常规差分方程(ODES)的一般框架,提出了一种具有外部输入和神经差分 - 代数方程(DAES)模块的神经竞争模块,用于电力系统动态分量模型。提出了基于AutoEncoder的框架,以提高培训型号的性能。还证明了将所提出的神经模块训练的神经动态模型集成到瞬态稳定性模拟的方法。对于由输入变量和输出变量的采样曲线组成的数据集,所提出的模块可用于满足黑匣子建模,物理数据集成建模,参数推断等的任务。测试是在IEEE-39中进行的测试系统证明提出的模块的有效性和潜力。
translated by 谷歌翻译
Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.
translated by 谷歌翻译
深度学习的最新进展使神经网络(NNS)能够在许多应用中成功地取代传统的数控求解器,从而实现令人印象深刻的计算收益。一个这样的应用是时域模拟,这对于许多工程系统的设计,分析和操作是必不可少的。模拟基于牛顿的求解器的动态系统是一种计算繁忙的任务,因为它需要在每个时间步骤解决差分和代数方程的参数化系统的解决方案。已经显示了各种基于NN的方法,以成功地近似于数值溶剂计算的轨迹。但是,以前的一些工程已经使用NNS来模拟数值求解器本身。为了快速加速时域模拟速度的表达目的,本文提出并探索了两个互补的替代数字溶剂。首先,我们使用NN以模仿由逆雅加诺在单个牛顿步骤中提供的线性变换。使用此过程,我们评估并将基于物理的残余错误评估并将基于NN映射的确切,物理的残留错误项目进行评估并将其留下物理为“循环”中的“循环”。所得到的工具称为物理投影的神经 - 牛顿求解器(Prenn),能够在观察到的速度下实现极高的数值准确度,其比基于牛顿的求解器更快地高达31%。在第二种方法中,我们将牛顿求解器在隐式跳动-Kutta积分器的核心上模拟,作为一个契约地图,迭代地寻求时域轨迹的一个固定点。相关的复发性NN仿真工具被称为合同神经牛顿求解器(Conns),嵌入有训练约束(通过CVXPY层),该训练约束(通过CVXPY层),保证NN提供的映射满足BANACH定点定理。
translated by 谷歌翻译
Physics-Informed Neural Networks (PINN) are algorithms from deep learning leveraging physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms into their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINNs loss function and their gradients. After reviewing of three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named \emph{ReLoBRaLo} (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers' equation, Kirchhoff's plate bending equation and Helmholtz's equation. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy, while also inducing significantly less computational overhead.
translated by 谷歌翻译
随机微分方程(SDE)用于描述各种复杂的随机动力学系统。学习SDE中的隐藏物理学对于揭示对这些系统的随机和非线性行为的基本理解至关重要。我们提出了一个灵活且可扩展的框架,用于训练人工神经网络,以学习代表SDE中隐藏物理的本构方程。所提出的随机物理学的神经普通微分方程框架(Spinode)通过已知的SDE结构(即已知的物理学)传播随机性,以产生一组确定性的ODE,以描述随机状态的统计矩的时间演变。然后,Spinode使用ODE求解器预测矩轨迹。 Spinode通过将预测的矩与从数据估计的矩匹配来学习隐藏物理的神经网络表示。利用了自动分化和微型批次梯度下降的最新进展,并利用了伴随灵敏度,以建立神经网络的未知参数。我们在三个基准内案例研究上展示了Spinod,并分析了框架的数值鲁棒性和稳定性。 Spinode提供了一个有希望的新方向,用于系统地阐明具有乘法噪声的多元随机动力学系统的隐藏物理。
translated by 谷歌翻译