深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
我们探讨了使用物理知识的神经网络急剧加速管理动力系统动态的常用代数方程的解决方案。在暂时稳定性评估方面,传统应用的方法要么携带显着的计算负担,需要模型简化,或使用过于保守的代理模型。传统的神经网络可以规避这些限制,而是面临着高质量训练数据集的高需求,而他们忽略了潜在的控制方程。物理知识的神经网络是不同的:它们将电力系统差分代数方程直接纳入神经网络培训,并大大降低了对训练数据的需求。本文深入潜入物理知识神经网络的电力系统瞬态稳定性评估的性能。介绍一种新的神经网络培训程序,以促进彻底的比较,我们探讨了物理知识的神经网络如何与传统的差分代数求解器和经典神经网络在计算时间,数据要求和预测准确性方面比较。我们说明了昆医生的两国系统的调查结果,并评估了物理知识的神经网络的机会和挑战,用作瞬态稳定性分析工具,突出了进一步开发这种方法的可能途径。
translated by 谷歌翻译
深入学习被证明是通过物理信息的神经网络(PINNS)求解部分微分方程(PDE)的有效工具。 Pinns将PDE残差嵌入到神经网络的损耗功能中,已成功用于解决各种前向和逆PDE问题。然而,第一代Pinns的一个缺点是它们通常具有许多训练点即使具有有限的准确性。在这里,我们提出了一种新的方法,梯度增强的物理信息的神经网络(GPInns),用于提高Pinns的准确性和培训效率。 GPInns利用PDE残差的梯度信息,并将梯度嵌入损耗功能。我们广泛地测试了GPinns,并证明了GPInns在前进和反向PDE问题中的有效性。我们的数值结果表明,GPInn比贴图更好地表现出较少的训练点。此外,我们将GPIn与基于残留的自适应细化(RAR)的方法组合,一种用于在训练期间自适应地改善训练点分布的方法,以进一步提高GPInn的性能,尤其是具有陡峭梯度的溶液的PDE。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
科学和工程学中的一个基本问题是设计最佳的控制政策,这些政策将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
translated by 谷歌翻译
在本文中,我们利用了最近的物理信息神经网络(PINN)的进步,并开发了一种基于通用的Pinn的框架,以评估多状态系统(MSS)的可靠性。提议的方法包括两个主要步骤。在第一步中,我们将MS的可靠性评估作为使用Pinn框架的机器学习问题。构建具有两个单独损耗组的前馈神经网络以编码由MS中的常微分方程(ODES)管理的初始条件和状态转换。接下来,从多任务学习的角度来看,我们解决了Pinn中的背部传播梯度大小的高不平衡问题。特别是,我们将损失函数中的每个元素视为个别任务,采用名为Projecting冲突渐变(PCGRAD)的梯度手术方法,其中任务的渐变将投影到具有冲突梯度的任何其他任务的常规平面上。梯度投影操作显着降低了训练销时梯度干扰引起的有害影响,从而将PINN的收敛速度加速到高精度解决方案到MSS可靠性评估。通过提出的基于Pinn的框架,我们在几乎不受时间或依赖状态转换和系统尺度从小到介质时,研究其对MSS可靠性评估的应用程序的应用。结果表明,基于Pinn的框架在MSS可靠性评估中显示了通用和显着性能,并且Pinn中的PCGrad掺入了溶液质量和收敛速度的大量提高。
translated by 谷歌翻译
Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.
translated by 谷歌翻译
科学机器学习(Sciml)的出现在思路科学领域开辟了一个新的领域,通过在基于物理和数据建模的界面的界面中开发方法。为此,近年来介绍了物理知识的神经网络(Pinns),通过在所谓的焊点上纳入物理知识来应对培训数据的稀缺。在这项工作中,我们研究了Pinns关于用于强制基于物理惩罚术语的配偶数量的预测性能。我们表明Pinns可能会失败,学习通过定义来满足物理惩罚术语的琐碎解决方案。我们制定了一种替代的采样方法和新的惩罚术语,使我们能够在具有竞争性结果的数据稀缺设置中纠正Pinns中的核心问题,同时减少最多80 \%的基准问题所需的搭配数量。
translated by 谷歌翻译
深度学习的繁荣激发了渴望整合这两个领域的计算流体动力学的研究人员和实践者。PINN(物理信息神经网络)方法就是这样的尝试。尽管文献中的大多数报告都显示出应用PINN方法的积极结果,但我们对其进行了实验扼杀了这种乐观。这项工作介绍了我们使用PINN解决两个基本流量问题的不成功的故事:2D Taylor-Green Vortex at $ re = 100 $ = 100 $和2D缸流,$ re re = 200 $。 Pinn方法解决了2D Taylor-Green涡流问题,并以可接受的结果为基础,我们将这种流程作为精度和性能基准。 Pinn方法的准确性需要大约32个小时的训练,以使$ 16 \ times 16 $有限差异模拟的准确性不到20秒。另一方面,2D气缸流甚至没有导致物理溶液。 Pinn方法的表现像稳态的求解器,没有捕获涡流脱落现象。通过分享我们的经验,我们要强调的是,Pinn方法仍然是一种正在进行的工作。需要更多的工作来使Pinn对于现实世界中的问题可行。
translated by 谷歌翻译
物理知识的神经网络(PINNS)最近由于解决前进和反向问题的能力而受到了很多关注。为了训练与PINN相关的深层神经网络,通常会使用不同损失项的加权总和构建总损耗函数,然后尝试将其最小化。这种方法通常会成为解决刚性方程式的问题,因为它不能考虑自适应增量。许多研究报告说,PINN的性能不佳及其在模拟僵硬的普通差分条件(ODE)条件下模拟僵硬的化学活动问题方面的挑战。研究表明,刚度是PINN在模拟刚性动力学系统中失败的主要原因。在这里,我们通过提出减少损失函数的弱形式来解决这个问题,这导致了新的PINN结构(进一步称为还原Pinn),该结构利用降低的集成方法来使Pinn能够求解僵硬的化学动力学。所提出的还原细菌可以应用于涉及僵硬动力学的各种反应扩散系统。为此,我们将初始价值问题(IVP)转换为它们的等效积分形式,并使用物理知识的神经网络求解所得的积分方程。在我们派生的基于积分的优化过程中,只有一个术语,而没有明确合并与普通微分方程(ODE)和初始条件(ICS)相关的损失项。为了说明减少细菌的功能,我们用它来模拟多个僵硬/轻度的二阶频率。我们表明,还原的Pinn可准确捕获刚性标量颂歌的溶液。我们还针对线性ODES的硬质系统验证了还原的Pinn。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
Solute transport in porous media is relevant to a wide range of applications in hydrogeology, geothermal energy, underground CO2 storage, and a variety of chemical engineering systems. Due to the complexity of solute transport in heterogeneous porous media, traditional solvers require high resolution meshing and are therefore expensive computationally. This study explores the application of a mesh-free method based on deep learning to accelerate the simulation of solute transport. We employ Physics-informed Neural Networks (PiNN) to solve solute transport problems in homogeneous and heterogeneous porous media governed by the advection-dispersion equation. Unlike traditional neural networks that learn from large training datasets, PiNNs only leverage the strong form mathematical models to simultaneously solve for multiple dependent or independent field variables (e.g., pressure and solute concentration fields). In this study, we construct PiNN using a periodic activation function to better represent the complex physical signals (i.e., pressure) and their derivatives (i.e., velocity). Several case studies are designed with the intention of investigating the proposed PiNN's capability to handle different degrees of complexity. A manual hyperparameter tuning method is used to find the best PiNN architecture for each test case. Point-wise error and mean square error (MSE) measures are employed to assess the performance of PiNNs' predictions against the ground truth solutions obtained analytically or numerically using the finite element method. Our findings show that the predictions of PiNN are in good agreement with the ground truth solutions while reducing computational complexity and cost by, at least, three orders of magnitude.
translated by 谷歌翻译
The identification of material parameters occurring in constitutive models has a wide range of applications in practice. One of these applications is the monitoring and assessment of the actual condition of infrastructure buildings, as the material parameters directly reflect the resistance of the structures to external impacts. Physics-informed neural networks (PINNs) have recently emerged as a suitable method for solving inverse problems. The advantages of this method are a straightforward inclusion of observation data. Unlike grid-based methods, such as the finite element method updating (FEMU) approach, no computational grid and no interpolation of the data is required. In the current work, we aim to further develop PINNs towards the calibration of the linear-elastic constitutive model from full-field displacement and global force data in a realistic regime. We show that normalization and conditioning of the optimization problem play a crucial role in this process. Therefore, among others, we identify the material parameters for initial estimates and balance the individual terms in the loss function. In order to reduce the dependence of the identified material parameters on local errors in the displacement approximation, we base the identification not on the stress boundary conditions but instead on the global balance of internal and external work. In addition, we found that we get a better posed inverse problem if we reformulate it in terms of bulk and shear modulus instead of Young's modulus and Poisson's ratio. We demonstrate that the enhanced PINNs are capable of identifying material parameters from both experimental one-dimensional data and synthetic full-field displacement data in a realistic regime. Since displacement data measured by, e.g., a digital image correlation (DIC) system is noisy, we additionally investigate the robustness of the method to different levels of noise.
translated by 谷歌翻译
机器学习方法最近在求解部分微分方程(PDE)中的承诺。它们可以分为两种广泛类别:近似解决方案功能并学习解决方案操作员。物理知识的神经网络(PINN)是前者的示例,而傅里叶神经操作员(FNO)是后者的示例。这两种方法都有缺点。 Pinn的优化是具有挑战性,易于发生故障,尤其是在多尺度动态系统上。 FNO不会遭受这种优化问题,因为它在给定的数据集上执行了监督学习,但获取此类数据可能太昂贵或无法使用。在这项工作中,我们提出了物理知识的神经运营商(Pino),在那里我们结合了操作学习和功能优化框架。这种综合方法可以提高PINN和FNO模型的收敛速度和准确性。在操作员学习阶段,Pino在参数PDE系列的多个实例上学习解决方案操作员。在测试时间优化阶段,Pino优化预先训练的操作员ANSATZ,用于PDE的查询实例。实验显示Pino优于许多流行的PDE家族的先前ML方法,同时保留与求解器相比FNO的非凡速度。特别是,Pino准确地解决了挑战的长时间瞬态流量,而其他基线ML方法无法收敛的Kolmogorov流程。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
在本文中,我们演示并调查了一些挑战,这些挑战阻碍了使用物理知识的神经网络解决复杂问题的方式。特别是,我们可视化受过训练的模型的损失景观,并在存在物理学的情况下对反向传播梯度进行灵敏度分析。我们的发现表明,现有的方法产生了难以导航的高度非凸损失景观。此外,高阶PDE污染了可能阻碍或防止收敛的反向传播梯度。然后,我们提出了一种新的方法,该方法绕过了高阶PDE操作员的计算并减轻反向传播梯度的污染。为此,我们降低了解决方案搜索空间的维度,并通过非平滑解决方案促进学习问题。我们的配方还提供了一种反馈机制,可帮助我们的模型适应地专注于难以学习的领域的复杂区域。然后,我们通过调整Lagrange乘数方法来提出一个无约束的二重问题。我们运用我们的方法来解决由线性和非线性PDE控制的几个具有挑战性的基准问题。
translated by 谷歌翻译
对复杂建筑环境的结构监测通常在设计,实验室测试和实际建筑参数之间遭受不匹配。此外,现实世界中的结构识别问题遇到了许多挑战。例如,缺乏准确的基线模型,高维度和复杂的多元部分微分方程(PDE)在训练和学习常规数据驱动算法方面遇到了重大困难。本文通过增强使用神经网络来控制结构动力学的PDE来探讨一个称为Neuralsi的新框架,以供结构识别。我们的方法试图从管理方程式估算非线性参数。我们考虑具有两个未知参数的非线性光束的振动,一个参数代表几何和材料变化,另一种代表主要通过阻尼捕获系统中的能量损失。参数估计的数据是从有限的一组测量值中获得的,这有利于在结构健康监测中的应用,其中通常未知现有结构的确切状态,并且只能在现场收集有限的数据样本。也可以使用已识别的结构参数在标准和极端条件下训练有素的模型。我们与纯数据驱动的神经网络和其他经典物理信息的神经网络(PINN)进行了比较。我们的方法将位移分布中的插值和外推误差降低了基线上的两到五个数量级。代码可从https://github.com/human-analysis/naural-scruptural-isendification获得。
translated by 谷歌翻译