Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
量子计算有望加快科学和工程中的一些最具挑战性问题。已经提出了量子算法,显示了从化学到物流优化的应用中的理论优势。科学和工程中出现的许多问题可以作为一组微分方程重写。用于求解微分方程的量子算法已经示出了容错量计算制度中的可提供的优势,其中深宽的量子电路可用于求解局部微分方程(PDES)的大型线性系统。最近,提出了求解非线性PDE的变分方法也具有近术语量子器件。最有前途的一般方法之一是基于近期科学机器学习领域的发展来解决PDE。我们将近期量子计算机的适用性扩展到更一般的科学机器学习任务,包括从测量数据集发现微分方程。我们使用可分辨率量子电路(DQC)来解决由操作员库参数化的等式,并在数据和方程的组合上执行回归。我们的结果显示了普通模型发现(QMOD)的有希望的路径,在经典和量子机器学习方法之间的界面上。我们在不同系统上展示了成功的参数推断和方程发现,包括二阶,常微分方程和非线性部分微分方程。
translated by 谷歌翻译
科学和工程学中的一个基本问题是设计最佳的控制政策,这些政策将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
科学机器学习(Sciml)的出现在思路科学领域开辟了一个新的领域,通过在基于物理和数据建模的界面的界面中开发方法。为此,近年来介绍了物理知识的神经网络(Pinns),通过在所谓的焊点上纳入物理知识来应对培训数据的稀缺。在这项工作中,我们研究了Pinns关于用于强制基于物理惩罚术语的配偶数量的预测性能。我们表明Pinns可能会失败,学习通过定义来满足物理惩罚术语的琐碎解决方案。我们制定了一种替代的采样方法和新的惩罚术语,使我们能够在具有竞争性结果的数据稀缺设置中纠正Pinns中的核心问题,同时减少最多80 \%的基准问题所需的搭配数量。
translated by 谷歌翻译
物理知识的神经网络(PINNS)最近由于解决前进和反向问题的能力而受到了很多关注。为了训练与PINN相关的深层神经网络,通常会使用不同损失项的加权总和构建总损耗函数,然后尝试将其最小化。这种方法通常会成为解决刚性方程式的问题,因为它不能考虑自适应增量。许多研究报告说,PINN的性能不佳及其在模拟僵硬的普通差分条件(ODE)条件下模拟僵硬的化学活动问题方面的挑战。研究表明,刚度是PINN在模拟刚性动力学系统中失败的主要原因。在这里,我们通过提出减少损失函数的弱形式来解决这个问题,这导致了新的PINN结构(进一步称为还原Pinn),该结构利用降低的集成方法来使Pinn能够求解僵硬的化学动力学。所提出的还原细菌可以应用于涉及僵硬动力学的各种反应扩散系统。为此,我们将初始价值问题(IVP)转换为它们的等效积分形式,并使用物理知识的神经网络求解所得的积分方程。在我们派生的基于积分的优化过程中,只有一个术语,而没有明确合并与普通微分方程(ODE)和初始条件(ICS)相关的损失项。为了说明减少细菌的功能,我们用它来模拟多个僵硬/轻度的二阶频率。我们表明,还原的Pinn可准确捕获刚性标量颂歌的溶液。我们还针对线性ODES的硬质系统验证了还原的Pinn。
translated by 谷歌翻译
We propose characteristic-informed neural networks (CINN), a simple and efficient machine learning approach for solving forward and inverse problems involving hyperbolic PDEs. Like physics-informed neural networks (PINN), CINN is a meshless machine learning solver with universal approximation capabilities. Unlike PINN, which enforces a PDE softly via a multi-part loss function, CINN encodes the characteristics of the PDE in a general-purpose deep neural network trained with the usual MSE data-fitting regression loss and standard deep learning optimization methods. This leads to faster training and can avoid well-known pathologies of gradient descent optimization of multi-part PINN loss functions. If the characteristic ODEs can be solved exactly, which is true in important cases, the output of a CINN is an exact solution of the PDE, even at initialization, preventing the occurrence of non-physical outputs. Otherwise, the ODEs must be solved approximately, but the CINN is still trained only using a data-fitting loss function. The performance of CINN is assessed empirically in forward and inverse linear hyperbolic problems. These preliminary results indicate that CINN is able to improve on the accuracy of the baseline PINN, while being nearly twice as fast to train and avoiding non-physical solutions. Future extensions to hyperbolic PDE systems and nonlinear PDEs are also briefly discussed.
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
在科学的背景下,众所周知的格言“一张图片胜过千言万语”可能是“一个型号胜过一千个数据集”。在本手稿中,我们将Sciml软件生态系统介绍作为混合物理法律和科学模型的信息,并使用数据驱动的机器学习方法。我们描述了一个数学对象,我们表示通用微分方程(UDE),作为连接生态系统的统一框架。我们展示了各种各样的应用程序,从自动发现解决高维汉密尔顿 - Jacobi-Bellman方程的生物机制,可以通过UDE形式主义和工具进行措辞和有效地处理。我们展示了软件工具的一般性,以处理随机性,延迟和隐式约束。这使得各种SCIML应用程序变为核心训练机构的核心集,这些训练机构高度优化,稳定硬化方程,并与分布式并行性和GPU加速器兼容。
translated by 谷歌翻译
最近在科学机器学习的工作已经开发出所谓的物理信息的神经网络(Pinn)模型。典型方法是将物理域知识纳入经验丢失功能的软限制,并使用现有的机器学习方法来培训模型。我们展示了,虽然现有的Pinn方法可以学习良好的模型,但它们可以轻松地未能学习相关的物理现象,甚至更复杂的问题。特别是,我们分析了众多不同的普遍物理兴趣的情况,包括使用对流,反应和扩散运营商学习微分方程。我们提供了证据表明Pinns中的软正规化,涉及基于PDE的差分运营商,可以引入许多微妙的问题,包括使问题更加不良。重要的是,我们表明,这些可能的失败模式不是由于NN架构中缺乏富有效力,但Pinn的设置使得损失景观很难优化。然后,我们描述了两个有希望的解决方案来解决这些故障模式。第一种方法是使用课程正则化,其中Pinn的丢失项从简单的PDE正则化开始,并且随着NN训练而变得逐渐变得更加复杂。第二种方法是将问题构成为序列到序列的学习任务,而不是学习一次性地预测整个时空。广泛的测试表明,与常规Pinn训练相比,我们可以通过这些方法实现最多1-2个数量级。
translated by 谷歌翻译
Physics-informed neural networks (PINNs) constitute a flexible approach to both finding solutions and identifying parameters of partial differential equations. Most works on the topic assume noiseless data, or data contaminated by weak Gaussian noise. We show that the standard PINN framework breaks down in case of non-Gaussian noise. We give a way of resolving this fundamental issue and we propose to jointly train an energy-based model (EBM) to learn the correct noise distribution. We illustrate the improved performance of our approach using multiple examples.
translated by 谷歌翻译
神经网络可用作PDE模型的代理。它们可以通过惩罚潜在方程或在训练期间损失函数中的物理性质保护来进行物理意识。电流方法允许另外尊重来自培训过程中的数值模拟或实验的数据。然而,该数据经常昂贵,因此只能用于复杂模型。在这项工作中,我们调查了物理感知模型如何富有计算方式,而是来自其他代理模型的数据,如减少阶模型(ROM)。为了避免相信过于低保的代理解决方案,我们开发一种对不精确数据中的错误敏感的方法。作为概念证明,我们考虑一维波浪方程,并表明,当纳入来自ROM的不精确数据时,训练精度增加了两个数量级。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
深入学习被证明是通过物理信息的神经网络(PINNS)求解部分微分方程(PDE)的有效工具。 Pinns将PDE残差嵌入到神经网络的损耗功能中,已成功用于解决各种前向和逆PDE问题。然而,第一代Pinns的一个缺点是它们通常具有许多训练点即使具有有限的准确性。在这里,我们提出了一种新的方法,梯度增强的物理信息的神经网络(GPInns),用于提高Pinns的准确性和培训效率。 GPInns利用PDE残差的梯度信息,并将梯度嵌入损耗功能。我们广泛地测试了GPinns,并证明了GPInns在前进和反向PDE问题中的有效性。我们的数值结果表明,GPInn比贴图更好地表现出较少的训练点。此外,我们将GPIn与基于残留的自适应细化(RAR)的方法组合,一种用于在训练期间自适应地改善训练点分布的方法,以进一步提高GPInn的性能,尤其是具有陡峭梯度的溶液的PDE。
translated by 谷歌翻译
在本文中,我们利用了最近的物理信息神经网络(PINN)的进步,并开发了一种基于通用的Pinn的框架,以评估多状态系统(MSS)的可靠性。提议的方法包括两个主要步骤。在第一步中,我们将MS的可靠性评估作为使用Pinn框架的机器学习问题。构建具有两个单独损耗组的前馈神经网络以编码由MS中的常微分方程(ODES)管理的初始条件和状态转换。接下来,从多任务学习的角度来看,我们解决了Pinn中的背部传播梯度大小的高不平衡问题。特别是,我们将损失函数中的每个元素视为个别任务,采用名为Projecting冲突渐变(PCGRAD)的梯度手术方法,其中任务的渐变将投影到具有冲突梯度的任何其他任务的常规平面上。梯度投影操作显着降低了训练销时梯度干扰引起的有害影响,从而将PINN的收敛速度加速到高精度解决方案到MSS可靠性评估。通过提出的基于Pinn的框架,我们在几乎不受时间或依赖状态转换和系统尺度从小到介质时,研究其对MSS可靠性评估的应用程序的应用。结果表明,基于Pinn的框架在MSS可靠性评估中显示了通用和显着性能,并且Pinn中的PCGrad掺入了溶液质量和收敛速度的大量提高。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
Deep learning techniques with neural networks have been used effectively in computational fluid dynamics (CFD) to obtain solutions to nonlinear differential equations. This paper presents a physics-informed neural network (PINN) approach to solve the Blasius function. This method eliminates the process of changing the non-linear differential equation to an initial value problem. Also, it tackles the convergence issue arising in the conventional series solution. It is seen that this method produces results that are at par with the numerical and conventional methods. The solution is extended to the negative axis to show that PINNs capture the singularity of the function at $\eta=-5.69$
translated by 谷歌翻译
机器学习中的不确定性量化(UQ)目前正在引起越来越多的研究兴趣,这是由于深度神经网络在不同领域的快速部署,例如计算机视觉,自然语言处理以及对风险敏感应用程序中可靠的工具的需求。最近,还开发了各种机器学习模型,以解决科学计算领域的问题,并适用于计算科学和工程(CSE)。物理知识的神经网络和深层操作员网络是两个这样的模型,用于求解部分微分方程和学习操作员映射。在这方面,[45]中提供了专门针对科学机器学习(SCIML)模型量身定制的UQ方法的全面研究。然而,尽管具有理论上的优点,但这些方法的实施并不简单,尤其是在大规模的CSE应用程序中,阻碍了他们在研究和行业环境中的广泛采用。在本文中,我们提出了一个开源python图书馆(https://github.com/crunch-uq4mi),称为Neuraluq,并伴有教育教程,用于以方便且结构化的方式采用SCIML的UQ方法。该图书馆既专为教育和研究目的,都支持多种现代UQ方法和SCIML模型。它基于简洁的工作流程,并促进了用户的灵活就业和易于扩展。我们首先提出了神经脉的教程,随后在四个不同的示例中证明了其适用性和效率,涉及动态系统以及高维参数和时间依赖性PDE。
translated by 谷歌翻译