科学和工程学中的一个基本问题是设计最佳的控制政策,这些政策将给定的系统转向预期的结果。这项工作提出了同时求解给定系统状态和最佳控制信号的控制物理信息的神经网络(控制PINNS),在符合基础物理定律的一个阶段框架中。先前的方法使用两个阶段的框架,该框架首先建模然后按顺序控制系统。相比之下,控制PINN将所需的最佳条件纳入其体系结构和损耗函数中。通过解决以下开环的最佳控制问题来证明控制PINN的成功:(i)一个分析问题,(ii)一维热方程,以及(iii)二维捕食者捕食者问题。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
Solute transport in porous media is relevant to a wide range of applications in hydrogeology, geothermal energy, underground CO2 storage, and a variety of chemical engineering systems. Due to the complexity of solute transport in heterogeneous porous media, traditional solvers require high resolution meshing and are therefore expensive computationally. This study explores the application of a mesh-free method based on deep learning to accelerate the simulation of solute transport. We employ Physics-informed Neural Networks (PiNN) to solve solute transport problems in homogeneous and heterogeneous porous media governed by the advection-dispersion equation. Unlike traditional neural networks that learn from large training datasets, PiNNs only leverage the strong form mathematical models to simultaneously solve for multiple dependent or independent field variables (e.g., pressure and solute concentration fields). In this study, we construct PiNN using a periodic activation function to better represent the complex physical signals (i.e., pressure) and their derivatives (i.e., velocity). Several case studies are designed with the intention of investigating the proposed PiNN's capability to handle different degrees of complexity. A manual hyperparameter tuning method is used to find the best PiNN architecture for each test case. Point-wise error and mean square error (MSE) measures are employed to assess the performance of PiNNs' predictions against the ground truth solutions obtained analytically or numerically using the finite element method. Our findings show that the predictions of PiNN are in good agreement with the ground truth solutions while reducing computational complexity and cost by, at least, three orders of magnitude.
translated by 谷歌翻译
Physics-Informed Neural Networks (PINN) are algorithms from deep learning leveraging physical laws by including partial differential equations together with a respective set of boundary and initial conditions as penalty terms into their loss function. In this work, we observe the significant role of correctly weighting the combination of multiple competitive loss functions for training PINNs effectively. To this end, we implement and evaluate different methods aiming at balancing the contributions of multiple terms of the PINNs loss function and their gradients. After reviewing of three existing loss scaling approaches (Learning Rate Annealing, GradNorm and SoftAdapt), we propose a novel self-adaptive loss balancing scheme for PINNs named \emph{ReLoBRaLo} (Relative Loss Balancing with Random Lookback). We extensively evaluate the performance of the aforementioned balancing schemes by solving both forward as well as inverse problems on three benchmark PDEs for PINNs: Burgers' equation, Kirchhoff's plate bending equation and Helmholtz's equation. The results show that ReLoBRaLo is able to consistently outperform the baseline of existing scaling methods in terms of accuracy, while also inducing significantly less computational overhead.
translated by 谷歌翻译
深度学习方法的应用加快了挑战性电流问题的分辨率,最近显示出令人鼓舞的结果。但是,电力系统动力学不是快照,稳态操作。必须考虑这些动力学,以确保这些模型提供的最佳解决方案遵守实用的动力约束,避免频率波动和网格不稳定性。不幸的是,由于其高计算成本,基于普通或部分微分方程的动态系统模型通常不适合在控制或状态估计中直接应用。为了应对这些挑战,本文介绍了一种机器学习方法,以近乎实时近似电力系统动态的行为。该拟议的框架基于梯度增强的物理知识的神经网络(GPINNS),并编码有关电源系统的基本物理定律。拟议的GPINN的关键特征是它的训练能力而无需生成昂贵的培训数据。该论文说明了在单机无限总线系统中提出的方法在预测转子角度和频率的前进和反向问题中的潜力,以及不确定的参数,例如惯性和阻尼,以展示其在一系列电力系统应用中的潜力。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
物理知识的神经网络(PINNS)最近由于解决前进和反向问题的能力而受到了很多关注。为了训练与PINN相关的深层神经网络,通常会使用不同损失项的加权总和构建总损耗函数,然后尝试将其最小化。这种方法通常会成为解决刚性方程式的问题,因为它不能考虑自适应增量。许多研究报告说,PINN的性能不佳及其在模拟僵硬的普通差分条件(ODE)条件下模拟僵硬的化学活动问题方面的挑战。研究表明,刚度是PINN在模拟刚性动力学系统中失败的主要原因。在这里,我们通过提出减少损失函数的弱形式来解决这个问题,这导致了新的PINN结构(进一步称为还原Pinn),该结构利用降低的集成方法来使Pinn能够求解僵硬的化学动力学。所提出的还原细菌可以应用于涉及僵硬动力学的各种反应扩散系统。为此,我们将初始价值问题(IVP)转换为它们的等效积分形式,并使用物理知识的神经网络求解所得的积分方程。在我们派生的基于积分的优化过程中,只有一个术语,而没有明确合并与普通微分方程(ODE)和初始条件(ICS)相关的损失项。为了说明减少细菌的功能,我们用它来模拟多个僵硬/轻度的二阶频率。我们表明,还原的Pinn可准确捕获刚性标量颂歌的溶液。我们还针对线性ODES的硬质系统验证了还原的Pinn。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
在本文中,我们演示并调查了一些挑战,这些挑战阻碍了使用物理知识的神经网络解决复杂问题的方式。特别是,我们可视化受过训练的模型的损失景观,并在存在物理学的情况下对反向传播梯度进行灵敏度分析。我们的发现表明,现有的方法产生了难以导航的高度非凸损失景观。此外,高阶PDE污染了可能阻碍或防止收敛的反向传播梯度。然后,我们提出了一种新的方法,该方法绕过了高阶PDE操作员的计算并减轻反向传播梯度的污染。为此,我们降低了解决方案搜索空间的维度,并通过非平滑解决方案促进学习问题。我们的配方还提供了一种反馈机制,可帮助我们的模型适应地专注于难以学习的领域的复杂区域。然后,我们通过调整Lagrange乘数方法来提出一个无约束的二重问题。我们运用我们的方法来解决由线性和非线性PDE控制的几个具有挑战性的基准问题。
translated by 谷歌翻译
微分方程的解决方案具有重要的科学和工程意义。物理知识的神经网络(PINN)已成为解决微分方程的有前途方法,但它们缺乏使用任何特定损失函数的理论理由。这项工作提出了微分方程gan(DEQGAN),这是一种使用生成对抗网络来求解微分方程的新方法,以“学习损失函数”以优化神经网络。在十二个普通和部分微分方程的套件上呈现结果,包括非线性汉堡,艾伦·卡恩,汉密尔顿和改良的爱因斯坦的重力方程,我们表明deqgan可以比使用$ pinn的均方一数级别的均方一数级别。 L_2 $,$ L_1 $和HUBER损失功能。我们还表明,Deqgan可以实现与流行数值方法竞争的解决方案精确度。最后,我们提出了两种方法,以提高Deqgan对不同的高参数设置的鲁棒性。
translated by 谷歌翻译
复杂物理动态的建模和控制在真实问题中是必不可少的。我们提出了一种新颖的框架,通常适用于通过用特殊校正器引入PDE解决方案操作员的代理模型来解决PDE受约束的最佳控制问题。所提出的框架的过程分为两个阶段:解决PDE约束(阶段1)的解决方案操作员学习并搜索最佳控制(阶段2)。一旦替代模型在阶段1训练,就可以在没有密集计算的阶段2中推断出最佳控制。我们的框架可以应用于数据驱动和数据的案例。我们展示了我们对不同控制变量的各种最优控制问题的成功应用,从泊松方程到汉堡方程的不同PDE约束。
translated by 谷歌翻译
概率密度演化的推导提供了对许多随机系统及其性能的行为的宝贵洞察力。但是,对于大多数实时应用程序,对概率密度演变的数值确定是一项艰巨的任务。后者是由于所需的时间和空间离散方案引起的,这些方案使大多数计算解决方案过于效率和不切实际。在这方面,有效的计算替代模型的开发至关重要。关于物理受限网络的最新研究表明,可以通过编码对深神经网络的物理洞察力来实现合适的替代物。为此,目前的工作介绍了Deeppdem,它利用物理信息网络的概念通过提出深度学习方法来解决概率密度的演变。 Deeppdem了解随机结构的一般密度演化方程(GDEE)。这种方法为无网格学习方法铺平了道路,该方法可以通过以前的模拟数据解决密度演化问题。此外,它还可以作为优化方案或实时应用程序中任何其他时空点的溶液的有效替代物。为了证明所提出的框架的潜在适用性,研究了两个具有不同激活功能的网络体系结构以及两个优化器。关于三个不同问题的数值实施验证了所提出方法的准确性和功效。
translated by 谷歌翻译
Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.
translated by 谷歌翻译
随着计算能力的增加和机器学习的进步,基于数据驱动的学习方法在解决PDE方面引起了极大的关注。物理知识的神经网络(PINN)最近出现并成功地在各种前进和逆PDES问题中取得了成功,其优异的特性,例如灵活性,无网格解决方案和无监督的培训。但是,它们的收敛速度较慢和相对不准确的解决方案通常会限制其在许多科学和工程领域中的更广泛适用性。本文提出了一种新型的数据驱动的PDES求解器,物理知识的细胞表示(Pixel),优雅地结合了经典数值方法和基于学习的方法。我们采用来自数值方法的网格结构,以提高准确性和收敛速度并克服PINN中呈现的光谱偏差。此外,所提出的方法在PINN中具有相同的好处,例如,使用相同的优化框架来解决前进和逆PDE问题,并很容易通过现代自动分化技术强制执行PDE约束。我们为原始Pinn所努力的各种具有挑战性的PDE提供了实验结果,并表明像素达到了快速收敛速度和高精度。
translated by 谷歌翻译
我们制定了一类由物理驱动的深层变量模型(PDDLVM),以学习参数偏微分方程(PDES)的参数到解决方案(正向)和解决方案到参数(逆)图。我们的公式利用有限元方法(FEM),深神经网络和概率建模来组装一个深层概率框架,在该框架中,向前和逆图通过连贯的不确定性量化近似。我们的概率模型明确合并了基于参数PDE的密度和可训练的解决方案到参数网络,而引入的摊销变异家庭假定参数到解决方案网络,所有这些网络均经过联合培训。此外,所提出的方法不需要任何昂贵的PDE解决方案,并且仅在训练时间内对物理信息进行了信息,该方法允许PDE的实时仿真和培训后的逆问题解决方案的产生,绕开了对FEM操作的需求,以相当的准确性,以便于FEM解决方案。提出的框架进一步允许无缝集成观察到的数据,以解决反问题和构建生成模型。我们证明了方法对非线性泊松问题,具有复杂3D几何形状的弹性壳以及整合通用物理信息信息的神经网络(PINN)体系结构的有效性。与传统的FEM求解器相比,训练后,我们最多达到了三个数量级的速度,同时输出连贯的不确定性估计值。
translated by 谷歌翻译
机器学习方法最近在求解部分微分方程(PDE)中的承诺。它们可以分为两种广泛类别:近似解决方案功能并学习解决方案操作员。物理知识的神经网络(PINN)是前者的示例,而傅里叶神经操作员(FNO)是后者的示例。这两种方法都有缺点。 Pinn的优化是具有挑战性,易于发生故障,尤其是在多尺度动态系统上。 FNO不会遭受这种优化问题,因为它在给定的数据集上执行了监督学习,但获取此类数据可能太昂贵或无法使用。在这项工作中,我们提出了物理知识的神经运营商(Pino),在那里我们结合了操作学习和功能优化框架。这种综合方法可以提高PINN和FNO模型的收敛速度和准确性。在操作员学习阶段,Pino在参数PDE系列的多个实例上学习解决方案操作员。在测试时间优化阶段,Pino优化预先训练的操作员ANSATZ,用于PDE的查询实例。实验显示Pino优于许多流行的PDE家族的先前ML方法,同时保留与求解器相比FNO的非凡速度。特别是,Pino准确地解决了挑战的长时间瞬态流量,而其他基线ML方法无法收敛的Kolmogorov流程。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
许多物理过程,例如天气现象或流体力学由部分微分方程(PDE)管辖。使用神经网络建模这种动态系统是一个新兴的研究领域。然而,目前的方法以各种方式限制:它们需要关于控制方程的先验知识,并限于线性或一阶方程。在这项工作中,我们提出了一种将卷积神经网络(CNNS)与可微分的颂歌求解器结合到模型动力系统的模型。我们表明,标准PDE求解器中使用的线路方法可以使用卷曲来表示,这使得CNN是对参数化任意PDE动态的自然选择。我们的模型可以应用于任何数据而不需要任何关于管理PDE的知识。我们评估通过求解各种PDE而产生的数据集的NeuralPDE,覆盖更高的订单,非线性方程和多个空间尺寸。
translated by 谷歌翻译