在过去的十年中,在许多工程领域,包括自动驾驶汽车,医疗诊断和搜索引擎,甚至在艺术创作中,神经网络(NNS)已被证明是极有效的工具。确实,NN通常果断地超过传统算法。直到最近才引起重大兴趣的一个领域是使用NNS设计数值求解器,尤其是用于离散的偏微分方程。最近的几篇论文考虑使用NNS来开发多机方法,这些方法是解决离散的偏微分方程和其他稀疏矩阵问题的领先计算工具。我们扩展了这些新想法,重点关注所谓的放松操作员(也称为Smoothers),这是Multigrid算法的重要组成部分,在这种情况下尚未受到很多关注。我们探索了一种使用NNS学习带有随机系数的扩散算子的放松参数的方法,用于雅各比类型的Smoothers和4Color Gaussseidel Smoothers。后者的产量异常高效且易于使连续的放松(SOR)SmoOthors平行。此外,这项工作表明,使用两个网格方法在相对较小的网格上学习放松参数,而Gelfand的公式可以轻松实现。这些方法有效地产生了几乎最佳的参数,从而显着提高了大网格上的Multigrid算法的收敛速率。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
在科学和工程应用中,通常需要反复解决类似的计算问题。在这种情况下,我们可以利用先前解决的问题实例中的数据来提高查找后续解决方案的效率。这提供了一个独特的机会,可以将机器学习(尤其是元学习)和科学计算相结合。迄今为止,文献中已经提出了各种此类域特异性方法,但是设计这些方法的通用方法仍然不足。在本文中,我们通过制定一个通用框架来描述这些问题,并提出一种基于梯度的算法来以统一的方式解决这些问题。作为这种方法的说明,我们研究了迭代求解器的适应性参数的自适应生成,以加速微分方程的溶液。我们通过理论分析和数值实验来证明我们方法的性能和多功能性,包括应用于不可压缩流量模拟的应用以及参数估计的逆问题。
translated by 谷歌翻译
These notes were compiled as lecture notes for a course developed and taught at the University of the Southern California. They should be accessible to a typical engineering graduate student with a strong background in Applied Mathematics. The main objective of these notes is to introduce a student who is familiar with concepts in linear algebra and partial differential equations to select topics in deep learning. These lecture notes exploit the strong connections between deep learning algorithms and the more conventional techniques of computational physics to achieve two goals. First, they use concepts from computational physics to develop an understanding of deep learning algorithms. Not surprisingly, many concepts in deep learning can be connected to similar concepts in computational physics, and one can utilize this connection to better understand these algorithms. Second, several novel deep learning algorithms can be used to solve challenging problems in computational physics. Thus, they offer someone who is interested in modeling a physical phenomena with a complementary set of tools.
translated by 谷歌翻译
在这项工作中,我们分析了不同程度的不同精度和分段多项式测试函数如何影响变异物理学知情神经网络(VPINN)的收敛速率,同时解决椭圆边界边界值问题,如何影响变异物理学知情神经网络(VPINN)的收敛速率。使用依靠INF-SUP条件的Petrov-Galerkin框架,我们在精确解决方案和合适的计算神经网络的合适的高阶分段插值之间得出了一个先验误差估计。数值实验证实了理论预测并突出了INF-SUP条件的重要性。我们的结果表明,以某种方式违反直觉,对于平滑解决方案,实现高衰减率的最佳策略在选择最低多项式程度的测试功能方面,同时使用适当高精度的正交公式。
translated by 谷歌翻译
神经网络的经典发展主要集中在有限维欧基德空间或有限组之间的学习映射。我们提出了神经网络的概括,以学习映射无限尺寸函数空间之间的运算符。我们通过一类线性积分运算符和非线性激活函数的组成制定运营商的近似,使得组合的操作员可以近似复杂的非线性运算符。我们证明了我们建筑的普遍近似定理。此外,我们介绍了四类运算符参数化:基于图形的运算符,低秩运算符,基于多极图形的运算符和傅里叶运算符,并描述了每个用于用每个计算的高效算法。所提出的神经运营商是决议不变的:它们在底层函数空间的不同离散化之间共享相同的网络参数,并且可以用于零击超分辨率。在数值上,与现有的基于机器学习的方法,达西流程和Navier-Stokes方程相比,所提出的模型显示出卓越的性能,而与传统的PDE求解器相比,与现有的基于机器学习的方法有关的基于机器学习的方法。
translated by 谷歌翻译
线性系统的迭代求解器是部分微分方程(PDE)的数值解的关键组件。过去几十年来一直进行了深入的研究,例如雅各比,高斯 - 塞德尔,共轭梯度,跨部方法及其更高级的变体,但仍有迫切需要开发更快,更强大和更可靠的求解器。基于操作员回归的科学深度学习的最新进展,我们提出了一种提示,即用于微分方程的混合,迭代,数值和可转移的求解器。提示结合了标准放松方法和深层操作员网络(DeepOnet)。与标准数值求解器相比,提示能够为宽类微分方程提供更快的解决方案,同时保留接近机器零的精度。通过本本征分析,我们发现提示中的单个求解器靶向本征谱系中的不同区域,从而导致均匀的收敛速率,从而使混合求解器的整体表现出色。此外,提示适用于多维方程,并且在计算域和可转移到不同离散化方面具有灵活性。
translated by 谷歌翻译
标准的神经网络可以近似一般的非线性操作员,要么通过数学运算符的组合(例如,在对流 - 扩散反应部分微分方程中)的组合,要么仅仅是黑匣子,例如黑匣子,例如一个系统系统。第一个神经操作员是基于严格的近似理论于2019年提出的深层操作员网络(DeepOnet)。从那时起,已经发布了其他一些较少的一般操作员,例如,基于图神经网络或傅立叶变换。对于黑匣子系统,对神经操作员的培训仅是数据驱动的,但是如果知道管理方程式可以在培训期间将其纳入损失功能,以开发物理知识的神经操作员。神经操作员可以用作设计问题,不确定性量化,自主系统以及几乎任何需要实时推断的应用程序中的代替代物。此外,通过将它们与相对轻的训练耦合,可以将独立的预训练deponets用作复杂多物理系统的组成部分。在这里,我们介绍了Deponet,傅立叶神经操作员和图神经操作员的评论,以及适当的扩展功能扩展,并突出显示它们在计算机械师中的各种应用中的实用性,包括多孔媒体,流体力学和固体机制, 。
translated by 谷歌翻译
我们为深度残留网络(RESNETS)提出了一种全球收敛的多级训练方法。设计的方法可以看作是递归多级信任区域(RMTR)方法的新型变体,该方法通过在训练过程中自适应调节迷你批量,在混合(随机确定性)设置中运行。多级层次结构和传输运算符是通过利用动力学系统的观点来构建的,该观点通过重新连接来解释远期传播作为对初始值问题的正向Euler离散化。与传统的培训方法相反,我们的新型RMTR方法还通过有限的内存SR1方法结合了有关多级层次结构各个级别的曲率信息。使用分类和回归领域的示例,对我们的多级训练方法的总体性能和收敛属性进行了数值研究。
translated by 谷歌翻译
机器学习领域的最新进展打开了高性能计算的新时代。机器学习算法在开发复杂问题的准确和成本效益的替代物中的应用已经引起了科学家的主要关注。尽管具有强大的近似功能,但代理人仍无法为问题产生“精确”解决方案。为了解决此问题,本文利用了最新的ML工具,并提供了线性方程系统的自定义迭代求解器,能够在任何所需的准确性级别求解大规模参数化问题。具体而言,建议的方法包括以下两个步骤。首先,进行了一组减少的模型评估集,并使用相应的解决方案用于建立从问题的参数空间到其解决方案空间的近似映射,并使用深层馈电神经网络和卷积自动编码器。该映射是一种手段,可以以微不足道的计算成本来获得对系统对新查询点的响应的非常准确的初始预测。随后,开发了一种受代数多机方法启发的迭代求解器与适当的正交分解(称为pod-2g)相结合的迭代求解器,该迭代求解器被开发为依次完善对确切系统解决方案的初始预测。在大规模系统的几个数值示例中,证明了POD-2G作为独立求解器或作为预处理梯度方法的预处理,结果表明其优于常规迭代溶液方案。
translated by 谷歌翻译
神经运营商最近成为设计神经网络形式的功能空间之间的解决方案映射的流行工具。不同地,从经典的科学机器学习方法,以固定分辨率为输入参数的单个实例学习参数,神经运算符近似PDE系列的解决方案图。尽管他们取得了成功,但是神经运营商的用途迄今为止仅限于相对浅的神经网络,并限制了学习隐藏的管理法律。在这项工作中,我们提出了一种新颖的非局部神经运营商,我们将其称为非本体内核网络(NKN),即独立的分辨率,其特征在于深度神经网络,并且能够处理各种任务,例如学习管理方程和分类图片。我们的NKN源于神经网络的解释,作为离散的非局部扩散反应方程,在无限层的极限中,相当于抛物线非局部方程,其稳定性通过非本种载体微积分分析。与整体形式的神经运算符相似允许NKN捕获特征空间中的远程依赖性,而节点到节点交互的持续处理使NKNS分辨率独立于NKNS分辨率。与神经杂物中的相似性,在非本体意义上重新解释,并且层之间的稳定网络动态允许NKN的最佳参数从浅到深网络中的概括。这一事实使得能够使用浅层初始化技术。我们的测试表明,NKNS在学习管理方程和图像分类任务中占据基线方法,并概括到不同的分辨率和深度。
translated by 谷歌翻译
物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们使用有限元方法(FEM)的几个想法来增强工程问题中现有的PINN的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加约束。所提出的方法仅需要一阶导数来构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。前者利用神经网络的复杂非线性插值将PDE及其能量形式最小化及其能量形式,而后者则在元素节点借助Shape函数在元素节点上使用相同。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案对两个原型问题的解决方案进行了检查:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合进行了讨论,以在未来的开发中快速准确地设计复合材料。
translated by 谷歌翻译
Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems.
translated by 谷歌翻译
深度学习表明了视觉识别和某些人工智能任务的成功应用。深度学习也被认为是一种强大的工具,具有近似功能的高度灵活性。在本工作中,设计具有所需属性的功能,以近似PDE的解决方案。我们的方法基于后验误差估计,其中解决了错误定位以在神经网络框架内制定误差估计器的伴随问题。开发了一种高效且易于实现的算法,以通过采用双重加权剩余方法来获得多个目标功能的后验误差估计,然后使用神经网络计算原始和伴随解决方案。本研究表明,即使具有相对较少的训练数据,这种基于数据驱动的模型的学习具有卓越的感兴趣量的近似。用数值测试实施例证实了新颖的算法发展。证明了在浅神经网络上使用深神经网络的优点,并且还呈现了收敛增强技术
translated by 谷歌翻译
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from the implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an education tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry, and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging Scientific Machine Learning field.
translated by 谷歌翻译
基于神经网络的求解部分微分方程的方法由于其简单性和灵活性来表示偏微分方程的解决方案而引起了相当大的关注。在训练神经网络时,网络倾向于学习与低频分量相对应的全局特征,而高频分量以较慢的速率(F原理)近似。对于解决方案包含广泛尺度的一类等式,由于无法捕获高频分量,网络训练过程可能会遭受缓慢的收敛性和低精度。在这项工作中,我们提出了一种分层方法来提高神经网络解决方案的收敛速率和准确性。所提出的方法包括多训练水平,其中引导新引入的神经网络来学习先前级别近似的残余。通过神经网络训练过程的性​​质,高级校正倾向于捕获高频分量。我们通过一套线性和非线性部分微分方程验证所提出的分层方法的效率和稳健性。
translated by 谷歌翻译
尽管在整个科学和工程中都无处不在,但只有少数部分微分方程(PDE)具有分析或封闭形式的解决方案。这激发了有关PDE的数值模拟的大量经典工作,最近,对数据驱动技术的研究旋转了机器学习(ML)。最近的一项工作表明,与机器学习的经典数值技术的混合体可以对任何一种方法提供重大改进。在这项工作中,我们表明,在纳入基于物理学的先验时,数值方案的选择至关重要。我们以基于傅立叶的光谱方法为基础,这些光谱方法比其他数值方案要高得多,以模拟使用平滑且周期性解决方案的PDE。具体而言,我们为流体动力学的三个模型PDE开发了ML增强的光谱求解器,从而提高了标准光谱求解器在相同分辨率下的准确性。我们还展示了一些关键设计原则,用于将机器学习和用于解决PDE的数值方法结合使用。
translated by 谷歌翻译
本文侧重于各种技术来查找替代近似方法,可以普遍用于各种CFD问题,但计算成本低,运行时低。在机器学习领域中探讨了各种技术,以衡量实现核心野心的效用。稳定的平流扩散问题已被用作测试用例,以了解方法可以提供解决方案的复杂程度。最终,该重点留在物理知识的机器学习技术上,其中求解微分方程是可能的,而无需计算数据。 i.e的普遍方法拉加里斯et.al.和M. Raissi et.al彻底探讨。普遍存在的方法无法解决占主导地位问题。提出了一种称为分布物理知识神经网络(DPINN)的物理知情方法,以解决平流的主导问题。它通过分割域并将其他基于物理的限制引入均方平方损耗条款来增加旧方法的可执行和能力。完成各种实验以探索结束与该方法结束的最终可能性。也完成了参数研究以了解方法对不同可调参数的方法。该方法经过稳定的平流 - 扩散问题和不稳定的方脉冲问题。记录非常准确的结果。极端学习机(ELM)是一种以可调谐参数成本的快速神经网络算法。在平面扩散问题上测试所提出的模型的基于ELM的变体。榆树使得复杂优化更简单,并且由于该方法是非迭代的,因此解决方案被记录在单一镜头中。基于ELM的变体似乎比简单的DPINN方法更好。在本文中,将来同时进行各种发展的范围。
translated by 谷歌翻译