随着人工智能和自动驾驶技术的快速发展,对半导体的需求预计将大大增加。但是,半导体制造和新技术的开发的大量扩展将带来许多缺陷晶片。如果这些缺陷晶片尚未正确检查,则对这些缺陷晶片的无效半导体处理将对我们的环境产生额外影响,例如二氧化碳的发射过量和能源消耗。在本文中,我们利用量子计算的信息处理优势来促进缺陷学习缺陷审查(DLDR)。我们提出了一种经典的量子混合算法,用于近期量子处理器的深度学习。通过调整在其上实现的参数,由我们的框架驱动的量子电路学习给定的DLDR任务,包括晶圆缺陷地图分类,缺陷模式分类和热点检测。此外,我们探索具有不同表达能力和纠缠能力的参数化量子电路。这些结果可用于构建未来的路线图,以开发基于电路的量子深度学习,以进行半导体缺陷检测。
translated by 谷歌翻译
本文旨在研究基于电路的混合量子卷积神经网络(QCNNS)如何在遥感的上下文中成功地在图像分类器中成功使用。通过在标准神经网络内引入量子层来丰富CNN的经典架构。本工作中提出的新型QCNN应用于土地使用和陆地覆盖(LULC)分类,选择为地球观测(EO)用例,并在欧元区数据集上测试用作参考基准。通过证明QCNN性能高于经典对应物,多标量分类的结果证明了所提出的方法的有效性。此外,各种量子电路的研究表明,利用量子纠缠的诸如最佳分类评分。本研究强调了将量子计算应用于EO案例研究的潜在能力,并为期货调查提供了理论和实验背景。
translated by 谷歌翻译
Semiconductor manufacturing is on the cusp of a revolution: the Internet of Things (IoT). With IoT we can connect all the equipment and feed information back to the factory so that quality issues can be detected. In this situation, more and more edge devices are used in wafer inspection equipment. This edge device must have the ability to quickly detect defects. Therefore, how to develop a high-efficiency architecture for automatic defect classification to be suitable for edge devices is the primary task. In this paper, we present a novel architecture that can perform defect classification in a more efficient way. The first function is self-proliferation, using a series of linear transformations to generate more feature maps at a cheaper cost. The second function is self-attention, capturing the long-range dependencies of feature map by the channel-wise and spatial-wise attention mechanism. We named this method as self-proliferation-and-attention neural network. This method has been successfully applied to various defect pattern classification tasks. Compared with other latest methods, SP&A-Net has higher accuracy and lower computation cost in many defect inspection tasks.
translated by 谷歌翻译
Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be regarded as machine learning models with remarkable expressive power. This Review presents the components of these models and discusses their application to a variety of data-driven tasks, such as supervised learning and generative modeling. With an increasing number of experimental demonstrations carried out on actual quantum hardware and with software being actively developed, this rapidly growing field is poised to have a broad spectrum of real-world applications.
translated by 谷歌翻译
量子计算是使用量子力学执行计算的过程。该领域研究某些亚杀菌粒子的量子行为,以便随后在执行计算,以及大规模信息处理中使用。这些能力可以在计算时间和经典计算机上的成本方面提供量子计算机的优势。如今,由于计算复杂性或计算所需的时间,具有科学挑战,这是由于古典计算而无法执行,并且量子计算是可能的答案之一。然而,电流量子器件尚未实现必要的QUBITS,并且没有足够的容错才能实现这些目标。尽管如此,还有其他领域,如机器学习或化学,其中量子计算对电流量子器件有用。本手稿旨在展示2017年和2021年之间发布的论文的系统文献综述,以确定,分析和分类量子机器学习和其应用中使用的不同算法。因此,该研究确定了使用量子机器学习技术和算法的52篇文章。发现算法的主要类型是经典机器学习算法的量子实现,例如支持向量机或K最近邻模型,以及古典的深度学习算法,如量子神经网络。许多文章试图解决目前通过古典机器学习回答的问题,但使用量子设备和算法。即使结果很有希望,量子机器学习也远未实现其全部潜力。由于现有量子计算机缺乏足够的质量,速度和比例以允许量子计算来实现其全部潜力,因此需要提高量子硬件。
translated by 谷歌翻译
Photorealistic rendering of real-world scenes is a tremendous challenge with a wide range of applications, including MR (Mixed Reality), and VR (Mixed Reality). Neural networks, which have long been investigated in the context of solving differential equations, have previously been introduced as implicit representations for Photorealistic rendering. However, realistic rendering using classic computing is challenging because it requires time-consuming optical ray marching, and suffer computational bottlenecks due to the curse of dimensionality. In this paper, we propose Quantum Radiance Fields (QRF), which integrate the quantum circuit, quantum activation function, and quantum volume rendering for implicit scene representation. The results indicate that QRF not only takes advantage of the merits of quantum computing technology such as high speed, fast convergence, and high parallelism, but also ensure high quality of volume rendering.
translated by 谷歌翻译
最近的工作已经开始探索参数化量子电路(PQC)作为一般函数近似器的潜力。在这项工作中,我们提出了一种量子古典的深网络结构,以提高经典的CNN模型辨别性。卷积层使用线性滤波器来扫描输入数据。此外,我们构建PQC,这是一种更有效的函数近似器,具有更复杂的结构,以捕获接收领域内的特征。通过以与CNN类似的方式将PQC滑过输入来获得特征图。我们还为所提出的模型提供培训算法。我们设计中使用的混合模型通过数值模拟验证。我们展示了MNIST上合理的分类性能,我们将性能与不同的设置中的模型进行比较。结果揭示了具有高表现性的ANSATZ模型实现了更低的成本和更高的准确性。
translated by 谷歌翻译
我们提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。我们定义一个动态健身函数,以获得最小的电路和最高的观点数据准确性,以确保所提出的技术是可推广且健壮的。我们通过惩罚其外观来最大程度地减少生成电路的复杂性。我们使用二维降低方法减少图像的大小:主成分分析(PCA),该分析(PCA)是为了优化目的而在个体中编码的,以及一个小的卷积自动编码器(CAE)。将这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
translated by 谷歌翻译
Quantum机器学习目前正在受到极大的关注,但是与实用应用的经典机器学习技术相比,其有用性尚不清楚。但是,有迹象表明,某些量子机学习算法可能会提高其经典同行的培训能力 - 在很少有培训数据的情况下,这在情况下可能特别有益。这种情况自然出现在医学分类任务中。在本文中,提出了不同的杂种量子卷积神经网络(QCCNN),提出了不同的量子电路设计和编码技术。它们应用于二维医学成像数据,例如在计算机断层扫描中具有不同的,潜在的恶性病变。这些QCCNN的性能已经与它们的经典同行之一相似,因此鼓励进一步研究将这些算法应用于医学成像任务的方向。
translated by 谷歌翻译
在过去的十年中,机器学习取得了巨大的成功,其应用程序从面部识别到自然语言处理不等。同时,在量子计算领域已经取得了快速的进步,包括开发强大的量子算法和高级量子设备。机器学习与量子物理学之间的相互作用具有将实际应用带给现代社会的有趣潜力。在这里,我们以参数化量子电路的形式关注量子神经网络。我们将主要讨论各种结构和编码量子神经网络的策略,以进行监督学习任务,并利用Yao.jl进行基准测试,这是用朱莉娅语言编写的量子模拟软件包。这些代码是有效的,旨在为科学工作中的初学者提供便利,例如开发强大的变分量子学习模型并协助相应的实验演示。
translated by 谷歌翻译
In recent times, Variational Quantum Circuits (VQC) have been widely adopted to different tasks in machine learning such as Combinatorial Optimization and Supervised Learning. With the growing interest, it is pertinent to study the boundaries of the classical simulation of VQCs to effectively benchmark the algorithms. Classically simulating VQCs can also provide the quantum algorithms with a better initialization reducing the amount of quantum resources needed to train the algorithm. This manuscript proposes an algorithm that compresses the quantum state within a circuit using a tensor ring representation which allows for the implementation of VQC based algorithms on a classical simulator at a fraction of the usual storage and computational complexity. Using the tensor ring approximation of the input quantum state, we propose a method that applies the parametrized unitary operations while retaining the low-rank structure of the tensor ring corresponding to the transformed quantum state, providing an exponential improvement of storage and computational time in the number of qubits and layers. This approximation is used to implement the tensor ring VQC for the task of supervised learning on Iris and MNIST datasets to demonstrate the comparable performance as that of the implementations from classical simulator using Matrix Product States.
translated by 谷歌翻译
量子计算机是下一代设备,有望执行超出古典计算机范围的计算。实现这一目标的主要方法是通过量子机学习,尤其是量子生成学习。由于量子力学的固有概率性质,因此可以合理地假设量子生成学习模型(QGLM)可能会超过其经典对应物。因此,QGLM正在从量子物理和计算机科学社区中受到越来越多的关注,在这些QGLM中,可以在近期量子机上有效实施各种QGLM,并提出了潜在的计算优势。在本文中,我们从机器学习的角度回顾了QGLM的当前进度。特别是,我们解释了这些QGLM,涵盖了量子电路出生的机器,量子生成的对抗网络,量子玻尔兹曼机器和量子自动编码器,作为经典生成学习模型的量子扩展。在这种情况下,我们探讨了它们的内在关系及其根本差异。我们进一步总结了QGLM在常规机器学习任务和量子物理学中的潜在应用。最后,我们讨论了QGLM的挑战和进一步研究指示。
translated by 谷歌翻译
随着实际量子计算机中的量子位数(QUBits)的数量恒定增加,实现和加速量子计算机上的普遍深入学习正在成为可能。随着这种趋势,基于量子神经元的不同设计出现了量子神经结构。 Quantum深度学习中的一个基本问题出现:什么是最好的量子神经结构?灵感来自古典计算的神经结构设计,该古典计算通常采用多种类型的神经元,本文首次尝试混合量子神经元设计来构建量子神经结构。我们观察到现有的量子神经元设计可能是完全不同但互补的,例如来自变分量子电路(VQC)和量子流的神经元。更具体地说,VQC可以应用真实值的权重,但遭受扩展到多个层,而量子流可以有效地构建多层网络,但仅限于使用二进制权重。要采取各自的优势,我们建议将它们混合在一起并弄清楚无缝连接的方法,而无需额外的昂贵测量。我们进一步研究了混合量子神经元的设计原理,这可以为未来提供量子神经结构勘探的指导。实验结果表明,具有混合量子神经元的鉴定的量子神经结构可以在MNIST数据集中达到90.62%的准确性,而VQC和量子流量分别比为52.77%和69.92%。
translated by 谷歌翻译
在过去的十年中,机器学习彻底改变了基于视力的质量评估,卷积神经网络(CNN)现在已成为标准。在本文中,我们考虑了该开发中的潜在下一步,并描述了有效地将经典图像数据映射到量子状态并允许可靠的图像分析的Quanvolutional神经网络(QNN)算法。我们实际上演示了如何在计算机视觉中利用量子设备以及如何将量子卷积引入古典CNN中。在处理工业质量控制中的现实世界用例时,我们在Pennylane框架内实施了混合QNN模型,并从经验上观察它,可以使用比经典CNN更少的培训数据实现更好的预测。换句话说,我们从经验上观察到真正的量子优势,对于由于卓越的数据编码而引起的工业应用。
translated by 谷歌翻译
在这个接近中间尺度的量子时代,云上有两种类型的近期量子设备:基于离散变量模型和线性光学器件(Photonics)QPU的超导量子处理单元(QPU),基于连续变量(CV)) 模型。离散变量模型中的量子计算以有限的尺寸量子状态空间和无限尺寸空间中的CV模型执行。在实现量子算法时,CV模型提供了更多的量子门,这些量子门在离散变量模型中不可用。基于简历的光子量子计算机使用不同的测量方法和截止尺寸的概念来控制量子电路的输出向量长度的额外灵活性。
translated by 谷歌翻译
使用量子计算,本文解决了两个科学压迫和日常相关问题,即化学逆转录,这是半导体供应链的药物/材料发现和安全性的重要一步。我们表明,量子长短期内存(QLSTM)是逆转录合成的可行工具。我们使用QLSTM实现了65%的培训准确性,而经典的LSTM可以达到100%。但是,在测试中,我们使用QLSTM实现80%的精度,而经典LSTM仅以70%的精度达到峰值!我们还展示了量子神经网络(QNN)在硬件安全域中的应用,特别是使用一组功率和区域特洛伊木马功能在硬件特洛伊木马(HT)检测中。QNN模型可实现高达97.27%的检测准确性。
translated by 谷歌翻译
量子计算有可能彻底改变和改变我们的生活和理解世界的方式。该审查旨在提供对量子计算的可访问介绍,重点是统计和数据分析中的应用。我们从介绍了了解量子计算所需的基本概念以及量子和经典计算之间的差异。我们描述了用作量子算法的构建块的核心量子子程序。然后,我们审查了一系列预期的量子算法,以便在统计和机器学习中提供计算优势。我们突出了将量子计算应用于统计问题的挑战和机遇,并讨论潜在的未来研究方向。
translated by 谷歌翻译
由于量子电路上的旋转组件,基于变异电路的某些量子神经网络可以被认为等于经典的傅立叶网络。另外,它们可用于预测连续函数的傅立叶系数。时间序列数据表示时间变量的状态。由于某些时间序列数据也可以视为连续功能,因此我们可以期望量子机学习模型能够在时间序列数据上成功执行许多数据分析任务。因此,重要的是研究用于时间数据处理的新量子逻辑并分析量子计算机上数据的内在关系。在本文中,我们通过使用需要几个量子门的简单量子运算符,浏览经典数据预处理和对Arima模型进行预测的量子类似物。然后,我们讨论未来的方向和一些可用于量子计算机时间数据分析的工具/算法。
translated by 谷歌翻译
基于内核的量子分类器是用于复杂数据的超线化分类的最有趣,最强大的量子机学习技术,可以在浅深度量子电路(例如交换测试分类器)中轻松实现。出乎意料的是,通过引入差异方案,可以将支持向量机固有而明确地实现,以将SVM理论的二次优化问题映射到量子古典的变分优化问题。该方案使用参数化的量子电路(PQC)实现,以创建一个不均匀的权重向量,以索引量子位,可以在线性时间内评估训练损失和分类得分。我们训练该变量量子近似支持向量机(VQASVM)的经典参数,该参数可以转移到其他VQASVM决策推理电路的许多副本中,以分类新查询数据。我们的VQASVM算法对基于云的量子计算机的玩具示例数据集进行了实验,以进行可行性评估,并进行了数值研究以评估其在标准的IRIS花朵数据集上的性能。虹膜数据分类的准确性达到98.8%。
translated by 谷歌翻译
使用量子卷积神经网络(QCNN)的机器学习在量子和经典数据分类中都取得了成功。在先前的研究中,在少数参数制度中,在相同的训练条件下,QCNN的分类准确性比其经典对应物具有更高的分类精度。但是,由于量子电路的大小有限,因此很难检查大规模量子模型的一般性能,这可以在不久的将来可靠地实施。我们建议转移学习是在嘈杂的中间量子量子时代利用小QCNN的有效策略。在经典到量词转移学习框架中,QCNN可以通过使用预训练的经典卷积神经网络(CNN)来解决复杂的分类问题,而无需大规模量子电路。我们对QCNN模型进行了数值模拟,并在转移学习下对MNIST数据分类进行了各种量子卷积和汇总操作,其中经典的CNN经过了时尚持续数据的培训。结果表明,在相似的训练条件下,从经典到量子CNN的转移学习比纯粹的经典转移学习模型要好得多。
translated by 谷歌翻译