在本文中,我们考虑了在规避风险的标准下线性收益的上下文多臂强盗问题。在每个回合中,每个手臂都会揭示上下文,决策者选择一只手臂拉动并获得相应的奖励。特别是,我们将均值变化视为风险标准,最好的组是具有最大均值奖励的均值。我们将汤普森采样算法应用于脱节模型,并为提出算法的变体提供全面的遗憾分析。对于$ t $ rounds,$ k $ Actions和$ d $ - 维功能向量,我们证明了$ o((1+ \ rho+\ frac {1} {1} {\ rho}){\ rho})d \ ln t \ ln t \ ln的遗憾。 \ frac {k} {\ delta} \ sqrt {d k t^{1+2 \ epsilon} \ ln \ frac {k} {\ delta} \ frac {1} {\ epsilon}} $ 1 - \ \ delta $在带有风险公差$ \ rho $的均值方差标准下,对于任何$ 0 <\ epsilon <\ frac {1} {2} $,$ 0 <\ delta <1 $。我们提出的算法的经验性能通过投资组合选择问题来证明。
translated by 谷歌翻译
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the stateof-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied version of the contextual bandits problem. We provide the first theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of Õ(d 3/2 √ T ) (or Õ(d T log(N ))), which is the best regret bound achieved by any computationally efficient algorithm for this problem, and is within a factor of √ d (or log(N )) of the information-theoretic lower bound for this problem.
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
The multi-armed bandit problem is a popular model for studying exploration/exploitation trade-off in sequential decision problems. Many algorithms are now available for this well-studied problem. One of the earliest algorithms, given by W. R. Thompson, dates back to 1933. This algorithm, referred to as Thompson Sampling, is a natural Bayesian algorithm. The basic idea is to choose an arm to play according to its probability of being the best arm. Thompson Sampling algorithm has experimentally been shown to be close to optimal. In addition, it is efficient to implement and exhibits several desirable properties such as small regret for delayed feedback. However, theoretical understanding of this algorithm was quite limited. In this paper, for the first time, we show that Thompson Sampling algorithm achieves logarithmic expected regret for the stochastic multi-armed bandit problem. More precisely, for the stochastic two-armed bandit problem, the expected regret in time T is O( ln T ∆ + 1 ∆ 3 ). And, for the stochastic N -armed bandit problem, the expected regret in time) 2 ln T ). Our bounds are optimal but for the dependence on ∆i and the constant factors in big-Oh.
translated by 谷歌翻译
我们解决了在线顺序决策的问题,即在利用当前知识以最大程度地提高绩效和探索新信息以使用多武器的强盗框架获得长期利益之间的权衡平衡。汤普森采样是选择解决这一探索探索困境的动作的启发式方法之一。我们首先提出了一个通用框架,该框架可帮助启发性地调整汤普森采样中的探索与剥削权衡取舍,并使用后部分布中的多个样本进行调整。利用此框架,我们为多臂匪徒问题提出了两种算法,并为累积遗憾提供了理论界限。接下来,我们证明了拟议算法对汤普森采样的累积遗憾表现的经验改善。我们还显示了所提出的算法在现实世界数据集上的有效性。与现有方法相反,我们的框架提供了一种机制,可以根据手头的任务改变探索/开发量。为此,我们将框架扩展到两个其他问题,即,在土匪中最佳的ARM识别和时间敏感学习,并将我们的算法与现有方法进行比较。
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
We consider the stochastic linear contextual bandit problem with high-dimensional features. We analyze the Thompson sampling (TS) algorithm, using special classes of sparsity-inducing priors (e.g. spike-and-slab) to model the unknown parameter, and provide a nearly optimal upper bound on the expected cumulative regret. To the best of our knowledge, this is the first work that provides theoretical guarantees of Thompson sampling in high dimensional and sparse contextual bandits. For faster computation, we use spike-and-slab prior to model the unknown parameter and variational inference instead of MCMC to approximate the posterior distribution. Extensive simulations demonstrate improved performance of our proposed algorithm over existing ones.
translated by 谷歌翻译
我们研究汤普森采样对上下文匪徒的效率。现有的基于汤普森采样的算法需要构建后验分布的拉普拉斯近似(即高斯分布),这是在一般协方差矩阵中的高维应用中效率低下的效率。此外,高斯近似可能不是对一般奖励产生功能的后验分布的良好替代物。我们提出了一种有效的后采样算法,即Langevin Monte Carlo Thompson采样(LMC-TS),该采样(LMC-TS)使用Markov Chain Monte Carlo(MCMC)方法直接从上下文斑块中的后验分布中直接采样。我们的方法在计算上是有效的,因为它只需要执行嘈杂的梯度下降更新而不构建后验分布的拉普拉斯近似。我们证明,所提出的算法实现了相同的sublinear遗憾,作为一种特殊情况的汤普森采样算法,是上下文匪徒的特殊情况,即线性上下文的强盗。我们在不同上下文匪徒模型上对合成数据和现实世界数据集进行实验,这表明直接从后验进行采样既具有计算上有效又具有竞争性能。
translated by 谷歌翻译
PAC-Bayes has recently re-emerged as an effective theory with which one can derive principled learning algorithms with tight performance guarantees. However, applications of PAC-Bayes to bandit problems are relatively rare, which is a great misfortune. Many decision-making problems in healthcare, finance and natural sciences can be modelled as bandit problems. In many of these applications, principled algorithms with strong performance guarantees would be very much appreciated. This survey provides an overview of PAC-Bayes performance bounds for bandit problems and an experimental comparison of these bounds. Our experimental comparison has revealed that available PAC-Bayes upper bounds on the cumulative regret are loose, whereas available PAC-Bayes lower bounds on the expected reward can be surprisingly tight. We found that an offline contextual bandit algorithm that learns a policy by optimising a PAC-Bayes bound was able to learn randomised neural network polices with competitive expected reward and non-vacuous performance guarantees.
translated by 谷歌翻译
汤普森采样(TS)是解决上下文多武装强盗问题最有效的算法之一。在本文中,我们提出了一种新的算法,称为神经汤普森采样,这适应了深度神经网络,用于勘探和剥削。在我们的算法的核心是一种新的奖励的后分布,其平均值是神经网络近似器,并且其方差建立在相应神经网络的神经切线特征上。我们证明,如果底层奖励函数是有界的,则可以保证所提出的算法来实现$ \ mathcal {o}(t ^ {1/2})$的累积遗憾,它与其他上下文强盗算法的遗憾匹配总轮数量$ t $。各种数据集中其他基准强盗算法的实验比较证实了我们的理论。
translated by 谷歌翻译
我们为线性上下文匪徒提出了一种新颖的算法(\ sqrt {dt \ log t})$遗憾,其中$ d $是上下文的尺寸,$ t $是时间范围。我们提出的算法配备了一种新型估计量,其中探索通过显式随机化嵌入。根据随机化的不同,我们提出的估计器从所有武器的上下文或选定的上下文中都取得了贡献。我们为我们的估计器建立了一个自称的绑定,这使累积遗憾的新颖分解为依赖添加剂的术语而不是乘法术语。在我们的问题设置下,我们还证明了$ \ omega(\ sqrt {dt})$的新颖下限。因此,我们提出的算法的遗憾与对数因素的下限相匹配。数值实验支持理论保证,并表明我们所提出的方法的表现优于现有的线性匪徒算法。
translated by 谷歌翻译
我们在非稳定性或时间变化偏好下,在$ k $的武器{动态遗憾最小化}中研究了\ mpph {动态遗憾最小化}。这是一个在线学习设置,其中代理在每个轮中选择一对项目,并仅观察该对的相对二进制`的次数“反馈,从该圆的底层偏好矩阵中采样。我们首先研究对抗性偏好序列的静态后悔最小化问题,并使用$ O(\ SQRT {kt})为高概率遗憾设计了高效的算法。我们接下来使用类似的算法思想,提出一种在非实践中的两种概念下的动态遗为最小化的高效且可透明的最佳算法。特别是,我们建立$ \ to(\ sqrt {skt})$和$ \ to({v_t ^ {1/3} k ^ {1/3} t ^ {2/3}})$动态后悔保证,$ S $是基础偏好关系中的“有效交换机”的总数,以及$ V_T $的衡量标准的“连续变化”非公平性。尽管现实世界系统中的非静止环境实用性,但在这项工作之前尚未研究这些问题的复杂性。我们通过证明在上述非实践概念下的符合下限保证匹配的匹配的算法来证明我们的算法的最优性。最后,我们通过广泛的模拟来证实我们的结果,并比较我们算法在最先进的基线上的功效。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
我们研究了在线多任务学习的问题,其中在相似但不一定相同的多臂强盗环境中执行任务。特别是,我们研究学习者如何通过知识转移来改善多个相关任务的整体绩效。虽然最近已证明,在所有任务同时解决的环境中,尚不清楚汤普森采样(TS)算法是否尚不清楚,虽然最近证明了基于上限的算法(UCB)算法几乎达到了最佳的性能保证,具有类似的理论属性。在这项工作中,我们为更通用的在线多任务学习协议提供了TS-Type算法,该协议扩展了并发设置。我们提供了其频繁的分析,并证明它在随机停止时间内使用新型浓度不平等的多任务数据聚集也几乎是最佳的。最后,我们评估了关于合成数据的算法,并表明与基于UCB的算法相比,TS-Type算法具有出色的经验性能和基线算法,该算法在没有转移的情况下为每个单独的任务执行TS。
translated by 谷歌翻译
本文统一了设计,简化了风险厌恶汤普森采样算法的分析,为多武装爆炸问题的常规风险功能为$ \ rho $。在大偏差理论中使用收缩原理,我们证明了这些连续风险功能的新型浓度界限。与现有的作品相比,所界限取决于样本本身,我们的范围仅取决于样本的数量。这使我们能够以追求的分析挑战,并统一现有汤普森采样的算法的遗憾范围。我们展示了广泛的风险功能以及它们的“漂亮”功能满足连续性条件。使用我们新开发的分析工具包,我们分析了算法$ \ rho $ -mts(对于多项式发行版)和$ \ rho $ -npts(对于有界分布),并证明他们承认渐近最佳的风险厌恶算法的最佳遗憾平均方差,CVAR等普遍存在风险措施,以及一系列新综合的风险措施。数值模拟表明,我们的界限是相当严格的VIS-\“A-VIS算法无关的下限。
translated by 谷歌翻译
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print or online or to submit the papers to another publication.
translated by 谷歌翻译
Maillard(2013)的博士论文呈现了$ k $武装匪徒问题的随机算法。我们呼叫Maillard采样(MS)的这种缺少已知的算法计算以封闭形式选择每个臂的概率,这对于从强盗数据的反事实评估有用,而是缺乏来自汤普森采样,这是一种广泛采用的匪徒行业算法。通过这种优点,我们重新审视MS并进行改进的分析,以表明它实现了渐近最优性和$ \ SQRT {kt \ log {k}} $ minimax后悔绑定在$ t $是时间界限,它与之匹配标准渐近最佳的UCB的性能。然后,我们提出了一个称为MS $ ^ + $的MS的变体,这将改善其最小绑定到$ \ sqrt {kt \ log {k}} $,而不会失去渐近最优值。 $ ^ + $ MS也可以调整为攻击性(即,较少的探索),而不会失去理论担保,从现有强盗算法无法使用的独特功能。我们的数值评估显示了MS $ ^ + $的有效性。
translated by 谷歌翻译
最近,提出了经典多军强盗的多代理变体来解决在线学习中的公平问题。受社会选择和经济学方面的长期工作的启发,目标是优化NASH的社会福利,而不是全面的效用。不幸的是,就回合$ t $的数量而言,以前的算法要么不是有效的,要么实现次级遗憾。我们提出了一种新的有效算法,其遗憾也比以前效率低下的算法要低。对于$ n $ agents,$ k $ ands和$ t $ rounds,我们的方法遗憾的是$ \ tilde {o}(\ sqrt {nkt} + nk)$。这是对先前方法的改进,后者对$ \ tilde {o}(\ min(nk,\ sqrt {n} k^{3/2})\ sqrt {t})$的遗憾。我们还使用$ \ tilde {o}(\ sqrt {kt} + n^2k)$遗憾的方法来补充有效算法。实验发现证实了与先前方法相比,我们有效算法的有效性。
translated by 谷歌翻译
我们设计了简单,最佳的政策,以确保在经典的多武器匪徒问题中确保对重尾风险的安全。最近,\ cite {fan2021偏差}表明,信息理论优化的匪徒算法患有严重的重尾风险;也就是说,最糟糕的案例可能会以$ 1/t $的速度慢慢衰减,其中$ t $是时间范围。受其结果的启发,我们进一步表明,广泛使用的政策,例如标准的上限约束政策和汤普森采样政策也会产生重型风险。实际上,对于所有“依赖实例依赖的一致”政策,这种重型风险实际上存在。为了确保对这种重型风险的安全性,对于两臂强盗设置,我们提供了一种简单的政策设计,即(i)具有最差的最佳性能,可用于预期的遗憾$ \ tilde o(\ sqrt {t} )$和(ii)具有最坏的尾巴概率,即以指数率$ \ exp( - \ omega(\ sqrt {t}))$产生线性遗憾衰减。我们进一步证明,尾巴概率的这种指数衰减率在所有具有最差最佳最优性的政策中都是最佳的,这些损失率是预期的。最后,我们使用任意$ k $的武器数量将政策设计和分析改进了一般环境。我们为在政策设计下的任何遗憾阈值中提供详细的尾巴概率表征。也就是说,产生大于$ x $的遗憾的最坏情况是由$ \ exp( - \ omega(x/\ sqrt {kt}))$上限。进行数值实验以说明理论发现。我们的结果揭示了对一致性和轻尾风险之间不兼容的见解,而这表明对预期的遗憾和轻尾风险的最佳最佳性是兼容的。
translated by 谷歌翻译
我们建议使用$ \ tilde {o}(\ sqrt {\ kappa^{ - 1} \ phi t} \ phi t})$ hears $ t $ the $ \ phi $ phi $是$ \ phi $是最olutimut,$ \ phi $是$ \ phi $,我们提出了一种用于广义线性奖励的新颖的上下文强盗算法。上下文协方差和$ \ kappa $的特征值是奖励差异的下限。在几种实际情况下,$ \ phi = o(d)$,我们的结果是带有$ \ sqrt {d} $的广义线性模型(GLM)土匪的第一个遗憾,而无需依赖Auer [2002]的方法。我们使用一个称为双重运动估计器的新型估计器(Doubly-bobust(DR)估计器的子类,但误差较紧,我们就实现了这种结合。 Auer [2002]的方法通过丢弃观察到的奖励来实现独立性,而我们的算法则在使用我们的DDR估计器的所有情况下实现了独立性。我们还提供了一个$ o(\ kappa^{ - 1} \ phi \ log(nt)\ log t)$遗憾在概率的边缘条件下以$ n $武器约束。 Bastani和Bayati [2020]和Bastani等人给出了遗憾的界限。 [2021]在环境中,所有臂都是共同的,但系数是特定的。当所有臂的上下文都不同,但系数很常见时,我们的第一个遗憾是在线性模型或GLM的边缘条件下绑定的。我们使用合成数据和真实示例进行实证研究,证明了我们的算法的有效性。
translated by 谷歌翻译