The multi-armed bandit problem is a popular model for studying exploration/exploitation trade-off in sequential decision problems. Many algorithms are now available for this well-studied problem. One of the earliest algorithms, given by W. R. Thompson, dates back to 1933. This algorithm, referred to as Thompson Sampling, is a natural Bayesian algorithm. The basic idea is to choose an arm to play according to its probability of being the best arm. Thompson Sampling algorithm has experimentally been shown to be close to optimal. In addition, it is efficient to implement and exhibits several desirable properties such as small regret for delayed feedback. However, theoretical understanding of this algorithm was quite limited. In this paper, for the first time, we show that Thompson Sampling algorithm achieves logarithmic expected regret for the stochastic multi-armed bandit problem. More precisely, for the stochastic two-armed bandit problem, the expected regret in time T is O( ln T ∆ + 1 ∆ 3 ). And, for the stochastic N -armed bandit problem, the expected regret in time) 2 ln T ). Our bounds are optimal but for the dependence on ∆i and the constant factors in big-Oh.
translated by 谷歌翻译
Thompson Sampling is one of the oldest heuristics for multi-armed bandit problems. It is a randomized algorithm based on Bayesian ideas, and has recently generated significant interest after several studies demonstrated it to have better empirical performance compared to the stateof-the-art methods. However, many questions regarding its theoretical performance remained open. In this paper, we design and analyze a generalization of Thompson Sampling algorithm for the stochastic contextual multi-armed bandit problem with linear payoff functions, when the contexts are provided by an adaptive adversary. This is among the most important and widely studied version of the contextual bandits problem. We provide the first theoretical guarantees for the contextual version of Thompson Sampling. We prove a high probability regret bound of Õ(d 3/2 √ T ) (or Õ(d T log(N ))), which is the best regret bound achieved by any computationally efficient algorithm for this problem, and is within a factor of √ d (or log(N )) of the information-theoretic lower bound for this problem.
translated by 谷歌翻译
我们解决了在线顺序决策的问题,即在利用当前知识以最大程度地提高绩效和探索新信息以使用多武器的强盗框架获得长期利益之间的权衡平衡。汤普森采样是选择解决这一探索探索困境的动作的启发式方法之一。我们首先提出了一个通用框架,该框架可帮助启发性地调整汤普森采样中的探索与剥削权衡取舍,并使用后部分布中的多个样本进行调整。利用此框架,我们为多臂匪徒问题提出了两种算法,并为累积遗憾提供了理论界限。接下来,我们证明了拟议算法对汤普森采样的累积遗憾表现的经验改善。我们还显示了所提出的算法在现实世界数据集上的有效性。与现有方法相反,我们的框架提供了一种机制,可以根据手头的任务改变探索/开发量。为此,我们将框架扩展到两个其他问题,即,在土匪中最佳的ARM识别和时间敏感学习,并将我们的算法与现有方法进行比较。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number ($k$) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with $k=2$ suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from $O(\sqrt{nT})$ to $O(n^2 \log T)$, where $n$ is the number of arms and $T$ is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, $k=3$ probes suffice to achieve parameter-independent constant regret, $O(n^2)$. Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited ``advice'' via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
我们考虑随机多武装强盗(MAB)问题,延迟影响了行动。在我们的环境中,过去采取的行动在随后的未来影响了ARM奖励。在现实世界中,行动的这种延迟影响是普遍的。例如,为某个社会群体中的人员偿还贷款的能力可能历史上历史上批准贷款申请的频率频率。如果银行将贷款申请拒绝拒绝弱势群体,则可以创建反馈循环,进一步损害该群体中获取贷款的机会。在本文中,我们制定了在多武装匪徒的背景下的行动延迟和长期影响。由于在学习期间,我们将强盗设置概括为对这种“偏置”的依赖性进行编码。目标是随着时间的推移最大化收集的公用事业,同时考虑到历史行动延迟影响所产生的动态。我们提出了一种算法,实现了$ \ tilde {\ mathcal {o}}的遗憾,并显示$ \ omega(kt ^ {2/3})$的匹配遗憾下限,其中$ k $是武器数量,$ t $是学习地平线。我们的结果通过添加技术来补充强盗文献,以处理具有长期影响的行动,并对设计公平算法有影响。
translated by 谷歌翻译
我们研究了在线多任务学习的问题,其中在相似但不一定相同的多臂强盗环境中执行任务。特别是,我们研究学习者如何通过知识转移来改善多个相关任务的整体绩效。虽然最近已证明,在所有任务同时解决的环境中,尚不清楚汤普森采样(TS)算法是否尚不清楚,虽然最近证明了基于上限的算法(UCB)算法几乎达到了最佳的性能保证,具有类似的理论属性。在这项工作中,我们为更通用的在线多任务学习协议提供了TS-Type算法,该协议扩展了并发设置。我们提供了其频繁的分析,并证明它在随机停止时间内使用新型浓度不平等的多任务数据聚集也几乎是最佳的。最后,我们评估了关于合成数据的算法,并表明与基于UCB的算法相比,TS-Type算法具有出色的经验性能和基线算法,该算法在没有转移的情况下为每个单独的任务执行TS。
translated by 谷歌翻译
我们考虑激励探索:一种多臂匪徒的版本,其中武器的选择由自私者控制,而算法只能发布建议。该算法控制信息流,信息不对称可以激励代理探索。先前的工作达到了最佳的遗憾率,直到乘法因素,这些因素根据贝叶斯先验而变得很大,并在武器数量上成倍规模扩展。采样每只手臂的一个更基本的问题一旦遇到了类似的因素。我们专注于激励措施的价格:出于激励兼容的目的,绩效的损失,广泛解释为。我们证明,如果用足够多的数据点初始化,则标准的匪徒汤普森采样是激励兼容的。因此,当收集这些数据点时,由于激励措施的绩效损失仅限于初始回合。这个问题主要降低到样本复杂性的问题:需要多少个回合?我们解决了这个问题,提供了匹配的上限和下限,并在各种推论中实例化。通常,最佳样品复杂性在“信念强度”中的武器数量和指数中是多项式。
translated by 谷歌翻译
本文统一了设计,简化了风险厌恶汤普森采样算法的分析,为多武装爆炸问题的常规风险功能为$ \ rho $。在大偏差理论中使用收缩原理,我们证明了这些连续风险功能的新型浓度界限。与现有的作品相比,所界限取决于样本本身,我们的范围仅取决于样本的数量。这使我们能够以追求的分析挑战,并统一现有汤普森采样的算法的遗憾范围。我们展示了广泛的风险功能以及它们的“漂亮”功能满足连续性条件。使用我们新开发的分析工具包,我们分析了算法$ \ rho $ -mts(对于多项式发行版)和$ \ rho $ -npts(对于有界分布),并证明他们承认渐近最佳的风险厌恶算法的最佳遗憾平均方差,CVAR等普遍存在风险措施,以及一系列新综合的风险措施。数值模拟表明,我们的界限是相当严格的VIS-\“A-VIS算法无关的下限。
translated by 谷歌翻译
我们考虑$ k $武装的随机土匪,并考虑到$ t $ t $的累积后悔界限。我们对同时获得最佳订单$ \ sqrt {kt} $的策略感兴趣,并与发行依赖的遗憾相关,即与$ \ kappa \ ln t $相匹配,该遗憾是最佳的。和Robbins(1985)以及Burnetas和Katehakis(1996),其中$ \ kappa $是最佳问题依赖性常数。这个常数的$ \ kappa $取决于所考虑的模型$ \ Mathcal {d} $(武器上可能的分布家族)。 M \'Enard and Garivier(2017)提供了在一维指数式家庭给出的模型的参数案例中实现这种双重偏见的策略,而Lattimore(2016,2018)为(Sub)高斯分布的家族而做到了这一点。差异小于$ 1 $。我们将此结果扩展到超过$ [0,1] $的所有分布的非参数案例。我们通过结合Audibert和Bubeck(2009)的MOSS策略来做到这一点,该策略享受了最佳订单$ \ sqrt {kt} $的无分配遗憾,以及Capp \'e等人的KL-UCB策略。 (2013年),我们为此提供了对最佳分布$ \ kappa \ ln t $遗憾的首次分析。我们能够在努力简化证明(以前已知的遗憾界限,因此进行的新分析)时,能够获得这种非参数两次审查结果;因此,本贡献的第二个优点是为基于$ k $武装的随机土匪提供基于索引的策略的经典后悔界限的证明。
translated by 谷歌翻译
我们考虑使用$ K $臂的随机匪徒问题,每一个都与$ [m,m] $范围内支持的有限分布相关。我们不认为$ [m,m] $是已知的范围,并表明学习此范围有成本。确实,出现了与分销相关和无分配后悔界限之间的新权衡,这阻止了同时实现典型的$ \ ln t $和$ \ sqrt {t} $ bunds。例如,仅当与分布相关的遗憾界限至少属于$ \ sqrt {t} $的顺序时,才能实现$ \ sqrt {t} $}无分布遗憾。我们展示了一项策略,以实现新的权衡表明的遗憾。
translated by 谷歌翻译
在本文中,我们研究了时间速度与非IID数据的协作学习模型中学习过程的交流次数之间的权衡,其中多个代理与可能不同的环境互动,他们希望学习一个目标。汇总环境。我们在匪徒理论中使用一个基本问题,称为多臂匪徒中最佳ARM识别作为传递以下概念信息的工具:对非IID数据的协作学习比在IID数据上更加困难。特别是,我们显示以下内容:a)非IID数据设置中的加速度可能小于$ 1 $(即放缓)。当回合$ r = o(1)$的数量时,我们将至少需要多项式数量的代理(就武器数量而言)来实现大于$ 1 $的加速。这与IID数据设置形成鲜明对比,在$ r \ ge 2 $中,无论代理数量如何,加速度总是至少$ 1 $。 b)学习过程中的适应性无济于事。这与IID数据设置形成鲜明对比,为了实现相同的速度,最佳的非自适应算法需要比最佳自适应算法要大得多。在技​​术空间中,我们进一步开发了Arxiv:1904.03293中引入的广义消除技术。我们表明,在使用复杂的硬输入分布并直接证明自适应算法的下限时,分配类别的隐式表示非常有用。
translated by 谷歌翻译
Consider the following abstract coin tossing problem: Given a set of $n$ coins with unknown biases, find the most biased coin using a minimal number of coin tosses. This is a common abstraction of various exploration problems in theoretical computer science and machine learning and has been studied extensively over the years. In particular, algorithms with optimal sample complexity (number of coin tosses) have been known for this problem for quite some time. Motivated by applications to processing massive datasets, we study the space complexity of solving this problem with optimal number of coin tosses in the streaming model. In this model, the coins are arriving one by one and the algorithm is only allowed to store a limited number of coins at any point -- any coin not present in the memory is lost and can no longer be tossed or compared to arriving coins. Prior algorithms for the coin tossing problem with optimal sample complexity are based on iterative elimination of coins which inherently require storing all the coins, leading to memory-inefficient streaming algorithms. We remedy this state-of-affairs by presenting a series of improved streaming algorithms for this problem: we start with a simple algorithm which require storing only $O(\log{n})$ coins and then iteratively refine it further and further, leading to algorithms with $O(\log\log{(n)})$ memory, $O(\log^*{(n)})$ memory, and finally a one that only stores a single extra coin in memory -- the same exact space needed to just store the best coin throughout the stream. Furthermore, we extend our algorithms to the problem of finding the $k$ most biased coins as well as other exploration problems such as finding top-$k$ elements using noisy comparisons or finding an $\epsilon$-best arm in stochastic multi-armed bandits, and obtain efficient streaming algorithms for these problems.
translated by 谷歌翻译
在本文中,我们考虑了在规避风险的标准下线性收益的上下文多臂强盗问题。在每个回合中,每个手臂都会揭示上下文,决策者选择一只手臂拉动并获得相应的奖励。特别是,我们将均值变化视为风险标准,最好的组是具有最大均值奖励的均值。我们将汤普森采样算法应用于脱节模型,并为提出算法的变体提供全面的遗憾分析。对于$ t $ rounds,$ k $ Actions和$ d $ - 维功能向量,我们证明了$ o((1+ \ rho+\ frac {1} {1} {\ rho}){\ rho})d \ ln t \ ln t \ ln的遗憾。 \ frac {k} {\ delta} \ sqrt {d k t^{1+2 \ epsilon} \ ln \ frac {k} {\ delta} \ frac {1} {\ epsilon}} $ 1 - \ \ delta $在带有风险公差$ \ rho $的均值方差标准下,对于任何$ 0 <\ epsilon <\ frac {1} {2} $,$ 0 <\ delta <1 $。我们提出的算法的经验性能通过投资组合选择问题来证明。
translated by 谷歌翻译
我们研究了标准匪徒问题的扩展,其中有很多专家。多层专家按一层进行选择,只有最后一层的专家才能发挥作用。学习政策的目的是最大程度地减少该等级专家环境中的遗憾。我们首先分析了总遗憾随着层数线性增长的案例。然后,我们关注的是所有专家都在施加上层信心(UCB)策略,并在不同情况下给出了几个子线上界限。最后,我们设计了一些实验,以帮助对分层UCB结构的一般情况进行遗憾分析,并显示我们理论结果的实际意义。本文提供了许多有关合理层次决策结构的见解。
translated by 谷歌翻译
我们研究了$ k $武装的决斗匪徒问题,这是传统的多武器匪徒问题的一种变体,其中以成对比较的形式获得了反馈。以前的学习算法专注于$ \ textit {完全自适应} $设置,在每次比较后,算法可以进行更新。 “批处理”决斗匪徒问题是由Web搜索排名和推荐系统等大规模应用程序激励的,在这种应用程序中执行顺序更新可能是不可行的。在这项工作中,我们要问:$ \ textit {是否只使用几个自适应回合有解决方案,该回合与$ k $ armed的决斗匪徒的最佳顺序算法的渐近后悔界限?} $? \ textit {在condorcet条件下} $,这是$ k $武装的决斗匪徒问题的标准设置。我们获得$ O(k^2 \ log^2(k)) + O(k \ log(t))$的渐近遗憾地平线。我们的遗憾界限几乎与在Condorcet条件下完全顺序环境中已知的最佳后悔界限相匹配。最后,在各种现实世界数据集的计算实验中,我们观察到使用$ o(\ log(t))$ rounds的算法与完全顺序的算法(使用$ t $ rounds)的性能几乎相同。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
我们考虑腐烂奖励的无限多臂匪徒问题,其中手臂的平均奖励是根据任意趋势在每次拉动的手臂上减小的,最大腐烂速率$ \ varrho = o(1)$。我们表明,这个学习问题具有$ \ omega(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$ worst-case遗憾的遗憾下降下降,其中$ t $是$ t $。我们表明,匹配的上限$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$,最多可以通过多元素来实现当算法知道最大腐烂速率$ \ varrho $时,一种使用UCB索引的算法,该算法使用UCB索引和一个阈值来决定是否继续拉动手臂或从进一步考虑中移除手臂。我们还表明,$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,t^{3/4} \})$遗憾的上限可以通过不知道的算法来实现$ \ varrho $的值通过使用自适应UCB索引以及自适应阈值值。
translated by 谷歌翻译