我们研究了$ k $武装的决斗匪徒问题,这是传统的多武器匪徒问题的一种变体,其中以成对比较的形式获得了反馈。以前的学习算法专注于$ \ textit {完全自适应} $设置,在每次比较后,算法可以进行更新。 “批处理”决斗匪徒问题是由Web搜索排名和推荐系统等大规模应用程序激励的,在这种应用程序中执行顺序更新可能是不可行的。在这项工作中,我们要问:$ \ textit {是否只使用几个自适应回合有解决方案,该回合与$ k $ armed的决斗匪徒的最佳顺序算法的渐近后悔界限?} $? \ textit {在condorcet条件下} $,这是$ k $武装的决斗匪徒问题的标准设置。我们获得$ O(k^2 \ log^2(k)) + O(k \ log(t))$的渐近遗憾地平线。我们的遗憾界限几乎与在Condorcet条件下完全顺序环境中已知的最佳后悔界限相匹配。最后,在各种现实世界数据集的计算实验中,我们观察到使用$ o(\ log(t))$ rounds的算法与完全顺序的算法(使用$ t $ rounds)的性能几乎相同。
translated by 谷歌翻译
我们研究汤普森采样(TS)算法的遗憾,指数为家庭土匪,其中奖励分配来自一个一维指数式家庭,该家庭涵盖了许多常见的奖励分布,包括伯努利,高斯,伽玛,伽玛,指数等。我们建议汤普森采样算法,称为expts,它使用新颖的采样分布来避免估计最佳臂。我们为expts提供了严格的遗憾分析,同时产生有限的遗憾和渐近遗憾。特别是,对于带指数级家庭奖励的$ k $臂匪徒,expts of horizo​​n $ t $ sub-ucb(对于有限的时间遗憾的是问题依赖的有限时间标准) $ \ sqrt {\ log k} $,并且对于指数家庭奖励,渐近最佳。此外,我们通过在Expts中使用的采样分配外添加一个贪婪的剥削步骤,提出$^+$,以避免过度估计亚最佳武器。 expts $^+$是随时随地的强盗算法,可用于指数级的家庭奖励分布同时实现最小值和渐近最优性。我们的证明技术在概念上很简单,可以轻松地应用于用特定奖励分布分析标准的汤普森抽样。
translated by 谷歌翻译
富达匪徒问题是$ k $的武器问题的变体,其中每个臂的奖励通过提供额外收益的富达奖励来增强,这取决于播放器如何对该臂进行“忠诚”在过去。我们提出了两种忠诚的模型。在忠诚点模型中,额外奖励的数量取决于手臂之前播放的次数。在订阅模型中,额外的奖励取决于手臂的连续绘制的当前数量。我们考虑随机和对抗问题。由于单臂策略在随机问题中并不总是最佳,因此对抗性环境中遗憾的概念需要仔细调整。我们介绍了三个可能的遗憾和调查,这可以是偏执的偏执。我们详细介绍了增加,减少和优惠券的特殊情况(玩家在手臂的每辆M $播放后获得额外的奖励)保真奖励。对于不一定享受载体遗憾的模型,我们提供了最糟糕的下限。对于那些展示Sublinear遗憾的模型,我们提供算法并绑定他们的遗憾。
translated by 谷歌翻译
在线学习算法广泛用于网络上的搜索和内容优化,必须平衡探索和开发,可能牺牲当前用户的经验,以获得将来会导致未来更好决策的信息。虽然在最坏的情况下,与贪婪算法相比,显式探索具有许多缺点,其通过选择当前看起来最佳的动作始终“利用”。我们在数据中固有的多样性的情况下提出了明确的探索不必要。我们在最近的一系列工作中进行了线性上下围匪盗模型中贪婪算法的平滑分析。我们提高了先前的结果,表明,只要多样性条件保持,贪婪的方法几乎符合任何其他算法的最佳可能性贝叶斯遗憾率,并且这种遗憾是最多的$ \ tilde o(t ^ {1/ 3})$。
translated by 谷歌翻译
我们通过反馈图来重新审视随机在线学习的问题,目的是设计最佳的算法,直至常数,无论是渐近还是有限的时间。我们表明,令人惊讶的是,在这种情况下,最佳有限时间遗憾的概念并不是一个唯一的定义属性,总的来说,它与渐近率是与渐近率分离的。我们讨论了替代选择,并提出了有限时间最优性的概念,我们认为是\ emph {有意义的}。对于这个概念,我们给出了一种算法,在有限的时间和渐近上都承认了准最佳的遗憾。
translated by 谷歌翻译
我们考虑了一种有可能无限的武器的随机强盗问题。我们为最佳武器和$ \ delta $的比例写入$ p ^ * $,以获得最佳和次优臂之间的最小含义 - 均值差距。我们在累积遗憾设置中表征了最佳学习率,以及在问题参数$ t $(预算),$ p ^ * $和$ \ delta $的最佳臂识别环境中。为了最大限度地减少累积遗憾,我们提供了订单$ \ OMEGA(\ log(t)/(p ^ * \ delta))$的下限和UCB样式算法,其匹配上限为一个因子$ \ log(1 / \ delta)$。我们的算法需要$ p ^ * $来校准其参数,我们证明了这种知识是必要的,因为在这个设置中调整到$ p ^ * $以来,因此是不可能的。为了获得最佳武器识别,我们还提供了订单$ \ Omega(\ exp(-ct \ delta ^ 2 p ^))的较低限制,以上输出次优臂的概率,其中$ c> 0 $是一个绝对常数。我们还提供了一个消除算法,其上限匹配下限到指数中的订单$ \ log(t)$倍数,并且不需要$ p ^ * $或$ \ delta $ as参数。我们的结果直接适用于竞争$ j $ -th最佳手臂的三个相关问题,识别$ \ epsilon $良好的手臂,并找到一个平均值大于已知订单的大分的手臂。
translated by 谷歌翻译
We study bandit model selection in stochastic environments. Our approach relies on a meta-algorithm that selects between candidate base algorithms. We develop a meta-algorithm-base algorithm abstraction that can work with general classes of base algorithms and different type of adversarial meta-algorithms. Our methods rely on a novel and generic smoothing transformation for bandit algorithms that permits us to obtain optimal $O(\sqrt{T})$ model selection guarantees for stochastic contextual bandit problems as long as the optimal base algorithm satisfies a high probability regret guarantee. We show through a lower bound that even when one of the base algorithms has $O(\log T)$ regret, in general it is impossible to get better than $\Omega(\sqrt{T})$ regret in model selection, even asymptotically. Using our techniques, we address model selection in a variety of problems such as misspecified linear contextual bandits, linear bandit with unknown dimension and reinforcement learning with unknown feature maps. Our algorithm requires the knowledge of the optimal base regret to adjust the meta-algorithm learning rate. We show that without such prior knowledge any meta-algorithm can suffer a regret larger than the optimal base regret.
translated by 谷歌翻译
The multi-armed bandit problem is a popular model for studying exploration/exploitation trade-off in sequential decision problems. Many algorithms are now available for this well-studied problem. One of the earliest algorithms, given by W. R. Thompson, dates back to 1933. This algorithm, referred to as Thompson Sampling, is a natural Bayesian algorithm. The basic idea is to choose an arm to play according to its probability of being the best arm. Thompson Sampling algorithm has experimentally been shown to be close to optimal. In addition, it is efficient to implement and exhibits several desirable properties such as small regret for delayed feedback. However, theoretical understanding of this algorithm was quite limited. In this paper, for the first time, we show that Thompson Sampling algorithm achieves logarithmic expected regret for the stochastic multi-armed bandit problem. More precisely, for the stochastic two-armed bandit problem, the expected regret in time T is O( ln T ∆ + 1 ∆ 3 ). And, for the stochastic N -armed bandit problem, the expected regret in time) 2 ln T ). Our bounds are optimal but for the dependence on ∆i and the constant factors in big-Oh.
translated by 谷歌翻译
我们研究了批量线性上下文匪徒的最佳批量遗憾权衡。对于任何批次数$ M $,操作次数$ k $,时间范围$ t $和维度$ d $,我们提供了一种算法,并证明了其遗憾的保证,这是由于技术原因,具有两阶段表达作为时间的时间$ t $ grose。我们还证明了一个令人奇迹的定理,令人惊讶地显示了在问题参数的“问题参数”中的两相遗憾(最高〜对数因子)的最优性,因此建立了确切的批量后悔权衡。与最近的工作\ citep {ruan2020linear}相比,这表明$ m = o(\ log \ log t)$批次实现无需批处理限制的渐近最佳遗憾的渐近最佳遗憾,我们的算法更简单,更易于实际实现。此外,我们的算法实现了所有$ t \ geq d $的最佳遗憾,而\ citep {ruan2020linear}要求$ t $大于$ d $的不切实际的大多项式。沿着我们的分析,我们还证明了一种新的矩阵集中不平等,依赖于他们的动态上限,这是我们的知识,这是其文学中的第一个和独立兴趣。
translated by 谷歌翻译
本文介绍了信息性多臂强盗(IMAB)模型,在每个回合中,玩家选择手臂,观察符号,并以符号的自我信息形式获得未观察到的奖励。因此,手臂的预期奖励是产生其符号的源质量函数的香农熵。玩家的目标是最大程度地提高与武器的熵值相关的预期奖励。在假设字母大小是已知的假设下,为IMAB模型提出了两种基于UCB的算法,该算法考虑了插件熵估计器的偏差。第一种算法在熵估计中乐观地纠正了偏置项。第二算法依赖于数据依赖性置信区间,该置信区间适应具有较小熵值的源。性能保证是通过上限为每种算法的预期遗憾提供的。此外,在Bernoulli案例中,将这些算法的渐近行为与伪遗憾的Lai-Robbins的下限进行了比较。此外,在假设\ textit {cract}字母大小的假设下是未知的,而播放器仅知道其上方的宽度上限,提出了一种基于UCB的算法,在其中,玩家的目的是减少由该算法造成的遗憾。未知的字母尺寸在有限的时间方面。数字结果说明了论文中介绍的算法的预期遗憾。
translated by 谷歌翻译
在本文中,我们研究了批次的嘴唇尖击匪徒问题,其中预期的奖励是Lipschitz,批量收集奖励观察。我们介绍了一种新颖的景观感知算法,称为批次的Lipschitz缩小(Blin),其自然适合批量反馈设置。特别是,我们表明,对于$ t $ -step问题,leipschitz奖励的zooming维度$ d_z $,我们的算法从理论上最佳的$ \ widetilde {\ mathcal {o}}}左右达到了left(t ^ {\ frac {d_z + 1} {d_z + 2}} \右)只使用$ \ mathcal {o} \ left(\ log \ log t \右)$批次。对于下限,我们展示在一个以$ B $ -batches的环境中,对于任何策略$ \ pi $,存在一个问题实例,使得预期的遗憾是由$ \ widetilde {\ omega} \ left的较低限制( r_z(t)^ \ frac {1} {1- \左(\ frac {1} {d + 2}右)^ b} \右)$,其中$ r_z(t)$是遗憾的遗憾Vanilla Lipschitz匪徒取决于缩放维度$ d_z $,$ d $是ARM空间的尺寸。作为直接后果,需要$ B = OMEGA(\ log \ log t)$批次来实现遗憾下限,并且BLIN算法是最佳的。
translated by 谷歌翻译
We consider the classic online learning and stochastic multi-armed bandit (MAB) problems, when at each step, the online policy can probe and find out which of a small number ($k$) of choices has better reward (or loss) before making its choice. In this model, we derive algorithms whose regret bounds have exponentially better dependence on the time horizon compared to the classic regret bounds. In particular, we show that probing with $k=2$ suffices to achieve time-independent regret bounds for online linear and convex optimization. The same number of probes improve the regret bound of stochastic MAB with independent arms from $O(\sqrt{nT})$ to $O(n^2 \log T)$, where $n$ is the number of arms and $T$ is the horizon length. For stochastic MAB, we also consider a stronger model where a probe reveals the reward values of the probed arms, and show that in this case, $k=3$ probes suffice to achieve parameter-independent constant regret, $O(n^2)$. Such regret bounds cannot be achieved even with full feedback after the play, showcasing the power of limited ``advice'' via probing before making the play. We also present extensions to the setting where the hints can be imperfect, and to the case of stochastic MAB where the rewards of the arms can be correlated.
translated by 谷歌翻译
我们研究了带有切换成本的土匪的最佳世界世界算法,最近由Rouyer,Seldin和Cesa-Bianchi提出,2021年。我们引入了一种令人惊讶的简单有效的算法}(t^{2/3})$在遗忘的对抗设置中,$ \ mathcal {o}(\ min \ {\ log(t)/\ delta^2,T^{2/3} \ \})$在随机约束的制度中,均具有(单位)切换成本,其中$ \ delta $是武器之间的差距。在随机限制的情况下,由于Rouyer等人,我们的界限比以前的结果得到了改善,这使$ \ Mathcal {o}(t^{1/3}/\ delta)$。我们伴随我们的结果,下限表明,通常,$ \ tilde {\ omega}(\ min \ {1/\ delta^2,t^{2/3} \})$遗憾是不可避免的。 - 具有$ \ mathcal {o}(t^{2/3})$ wort-case遗憾的算法的算法。
translated by 谷歌翻译
在本文中,我们研究了汤普森采样(TS)方法的应用到随机组合多臂匪徒(CMAB)框架中。当所有基本臂的结果分布都是独立的,并获得$ o(m \ log k _ {\ max} \ log t / \ delta_时,我们首先分析一般CMAB模型的标准TS算法。 {\ min})$,其中$ m $是基本武器的数量,$ k _ {\ max} $是最大的超级臂的大小,$ t $是时间范围,而$ \ delta _ {\ min} $是最佳解决方案的预期奖励与任何非最佳解决方案之间的最小差距。这种遗憾的上限比$ o(m(\ log k _ {\ max})^2 \ log t / \ delta _ {\ min})$更好。此外,我们的新颖分析技术可以帮助收紧其他基于UCB的政策(例如ESC)的遗憾界限,因为我们改善了计算累积遗憾的方法。然后,我们考虑Matroid Bandit设置(CMAB模型的特殊类别),在这里我们可以删除跨武器的独立性假设,并实现与下限匹配的遗憾上限。除了遗憾的上限外,我们还指出,一个人不能直接替换确切的离线甲骨文(将离线问题实例的参数作为输入,并在此实例下输出确切的最佳操作),用TS算法中的近似oracle替换了ts算法的近似值。甚至经典的mAb问题。最后,我们使用一些实验来显示TS遗憾与其他现有算法之间的比较,实验结果表明TS优于现有基准。
translated by 谷歌翻译
我们通过审查反馈重复进行一定的第一价格拍卖来研究在线学习,在每次拍卖结束时,出价者只观察获胜的出价,学会了适应性地出价,以最大程度地提高她的累积回报。为了实现这一目标,投标人面临着一个具有挑战性的困境:如果她赢得了竞标 - 获得正收益的唯一方法 - 然后她无法观察其他竞标者的最高竞标,我们认为我们认为这是从中汲取的。一个未知的分布。尽管这一困境让人联想到上下文强盗中的探索探索折衷权,但现有的UCB或汤普森采样算法无法直接解决。在本文中,通过利用第一价格拍卖的结构属性,我们开发了第一个实现$ o(\ sqrt {t} \ log^{2.5} t)$ hearry bund的第一个学习算法(\ sqrt {t} \ log^{2.5} t),这是最小值的最低$ $ \ log $因素,当投标人的私人价值随机生成时。我们这样做是通过在一系列问题上提供算法,称为部分有序的上下文匪徒,该算法将图形反馈跨动作,跨环境跨上下文进行结合,以及在上下文中的部分顺序。我们通过表现出一个奇怪的分离来确定该框架的优势和劣势,即在随机环境下几乎可以独立于动作/背景规模的遗憾,但是在对抗性环境下是不可能的。尽管这一通用框架有限制,但我们进一步利用了第一价格拍卖的结构,并开发了一种学习算法,该算法在存在对手生成的私有价值的情况下,在存在的情况下可以有效地运行样本(并有效地计算)。我们建立了一个$ o(\ sqrt {t} \ log^3 t)$遗憾,以此为此算法,因此提供了对第一价格拍卖的最佳学习保证的完整表征。
translated by 谷歌翻译
我们在非稳定性或时间变化偏好下,在$ k $的武器{动态遗憾最小化}中研究了\ mpph {动态遗憾最小化}。这是一个在线学习设置,其中代理在每个轮中选择一对项目,并仅观察该对的相对二进制`的次数“反馈,从该圆的底层偏好矩阵中采样。我们首先研究对抗性偏好序列的静态后悔最小化问题,并使用$ O(\ SQRT {kt})为高概率遗憾设计了高效的算法。我们接下来使用类似的算法思想,提出一种在非实践中的两种概念下的动态遗为最小化的高效且可透明的最佳算法。特别是,我们建立$ \ to(\ sqrt {skt})$和$ \ to({v_t ^ {1/3} k ^ {1/3} t ^ {2/3}})$动态后悔保证,$ S $是基础偏好关系中的“有效交换机”的总数,以及$ V_T $的衡量标准的“连续变化”非公平性。尽管现实世界系统中的非静止环境实用性,但在这项工作之前尚未研究这些问题的复杂性。我们通过证明在上述非实践概念下的符合下限保证匹配的匹配的算法来证明我们的算法的最优性。最后,我们通过广泛的模拟来证实我们的结果,并比较我们算法在最先进的基线上的功效。
translated by 谷歌翻译
我们考虑腐烂奖励的无限多臂匪徒问题,其中手臂的平均奖励是根据任意趋势在每次拉动的手臂上减小的,最大腐烂速率$ \ varrho = o(1)$。我们表明,这个学习问题具有$ \ omega(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$ worst-case遗憾的遗憾下降下降,其中$ t $是$ t $。我们表明,匹配的上限$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,\ sqrt {t} \})$,最多可以通过多元素来实现当算法知道最大腐烂速率$ \ varrho $时,一种使用UCB索引的算法,该算法使用UCB索引和一个阈值来决定是否继续拉动手臂或从进一步考虑中移除手臂。我们还表明,$ \ tilde {o}(\ max \ {\ varrho^{1/3} t,t^{3/4} \})$遗憾的上限可以通过不知道的算法来实现$ \ varrho $的值通过使用自适应UCB索引以及自适应阈值值。
translated by 谷歌翻译
在古典语境匪徒问题中,在每轮$ t $,学习者观察一些上下文$ c $,选择一些动作$ i $执行,并收到一些奖励$ r_ {i,t}(c)$。我们考虑此问题的变体除了接收奖励$ r_ {i,t}(c)$之外,学习者还要学习其他一些上下文$的$ r_ {i,t}(c')$的值C'$ in设置$ \ mathcal {o} _i(c)$;即,通过在不同的上下文下执行该行动来实现的奖励\ mathcal {o} _i(c)$。这种变体出现在若干战略设置中,例如学习如何在非真实的重复拍卖中出价,最热衷于随着许多平台转换为运行的第一价格拍卖。我们将此问题称为交叉学习的上下文匪徒问题。古典上下围匪徒问题的最佳算法达到$ \ tilde {o}(\ sqrt {ckt})$遗憾针对所有固定策略,其中$ c $是上下文的数量,$ k $的行动数量和$ $次数。我们设计并分析了交叉学习的上下文匪徒问题的新算法,并表明他们的遗憾更好地依赖上下文的数量。在选择动作时学习所有上下文的奖励的完整交叉学习下,即设置$ \ mathcal {o} _i(c)$包含所有上下文,我们显示我们的算法实现后悔$ \ tilde {o}( \ sqrt {kt})$,删除$ c $的依赖。对于任何其他情况,即在部分交叉学习下,$ | \ mathcal {o} _i(c)| <c $ for $(i,c)$,遗憾界限取决于如何设置$ \ mathcal o_i(c)$影响上下文之间的交叉学习的程度。我们从Ad Exchange运行一流拍卖的广告交换中模拟了我们的真实拍卖数据的算法,并表明了它们优于传统的上下文强盗算法。
translated by 谷歌翻译
我们考虑具有未知实用程序参数的多项式logit模型(MNL)下的动态分类优化问题。本文研究的主要问题是$ \ varepsilon $ - 污染模型下的模型错误指定,该模型是强大统计和机器学习中的基本模型。特别是,在整个长度$ t $的销售范围内,我们假设客户根据$(1- \ varepsilon)$ - 时间段的$(1- \ varepsilon)的基础多项式logit选择模型进行购买,并进行任意购买取而代之的是在剩余的$ \ varepsilon $ - 分数中的决策。在此模型中,我们通过主动淘汰策略制定了新的强大在线分类优化政策。我们对遗憾建立上限和下界,并表明当分类能力恒定时,我们的政策是$ t $的最佳对数因素。分类能力具有恒定的上限。我们进一步制定了一种完全自适应策略,该政策不需要任何先验知识,即污染参数$ \ varepsilon $。如果存在最佳和亚最佳产品之间存在的亚临时差距,我们还建立了依赖差距的对数遗憾上限和已知的 - $ \ VAREPSILON $和UNKNOWER-$ \ \ VAREPSILON $案例。我们的仿真研究表明,我们的政策表现优于基于上置信度范围(UCB)和汤普森采样的现有政策。
translated by 谷歌翻译
我们研究了在高维稀疏线性上下文匪徒中动态批处理学习的问题,在给定的最大批量约束下,决策者在每个批次结束时只能观察奖励,可以动态地决定如何进行奖励。许多人将包括在下一批中(在当前批次结束时)以及每批采用哪些个性化行动选择方案。在各种实际情况下,这种批处理的限制无处不在,包括在临床试验中的营销和医疗选择中的个性化产品。我们通过后悔的下限表征了此问题中的基本学习限制,并提供了匹配的上限(直至日志因素),从而为此问题开了最佳方案。据我们所知,我们的工作为在高维稀疏线性上下文匪徒中对动态批处理学习的理论理解提供了第一个侵入。值得注意的是,即使我们的结果的一种特殊情况 - 当不存在批处理约束时 - 都会产生简单的无探索算法使用Lasso估算器,已经达到了在高维线性匪板中为标准在线学习的最小值最佳遗憾(对于No-Cargin情况),在高维上下文Bandits的新兴文献中似乎未知。
translated by 谷歌翻译